9.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+
(1)求a2,a3,a4,a5;
(2)歸納猜想出通項(xiàng)公式an,并且用數(shù)學(xué)歸納法證明.

分析 (1)利用條件,代入可求a2,a3,a4,a5
(2)歸納猜想出通項(xiàng)公式an=2n-1,再用數(shù)學(xué)歸納法證明.

解答 解:(1)a2=3,a3=7,a4=15,a5=31,
(2)歸納猜想出通項(xiàng)公式an=2n-1,
①當(dāng)n=1時,a1=1=21-1,成立,
②假設(shè)n=k時成立,即ak=2k-1,
則當(dāng)n=k+1時,由an+1=2an+1(n∈N+
得:ak+1=2ak+1=2(2k-1)+1=2k+1-2+1=2k+1-1,
所以n=k+1時也成立;
綜合①②,對n∈N*等式都成立,從而得證.

點(diǎn)評 此題主要考查歸納法的證明,歸納法一般三個步驟:(1)驗(yàn)證n=1成立;(2)假設(shè)n=k成立;(3)利用已知條件證明n=k+1也成立,從而求證,這是數(shù)列的通項(xiàng)一種常用求解的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{1+tsinα}\end{array}\right.$(t為參數(shù),其中0≤α<π).以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ+$\frac{9}{ρ}$=4cosθ-6sinθ(ρ>0)
(I)當(dāng)α=$\frac{3π}{4}$時,設(shè)曲線C1與C2交于A、B兩點(diǎn),求|AB|;
(Ⅱ)已知曲線C1過定點(diǎn)P,Q是曲線C2上的動點(diǎn),求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C1:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)與拋物線C2:x2=y+1有公共弦AB(A在B左邊),AB=2,C2的頂點(diǎn)是C1的一個焦點(diǎn),過點(diǎn)B且斜率為k(k≠0)的直線l與C1、C2分別交于點(diǎn)M、N(均異于點(diǎn)A、B).
(Ⅰ)求C1的方程;
(Ⅱ)若點(diǎn)A在以線段MN為直徑的圓外,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(其中a>b>0)的左、右焦點(diǎn),橢圓C過點(diǎn)(-$\sqrt{3}$,1)且與拋物線y2=-8x有一個公共的焦點(diǎn).
(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)且斜率為1的直線l與橢圓交于A、B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知x,y滿足x2+y2=1,求證:|ax+by|≤$\sqrt{{a}^{2}+^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知sinA=2cosB•sinC,則△ABC的形狀是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.甲能正確完成其中的4題,乙能正確完成每道題的概率為$\frac{2}{3}$,且每道題完成與否互不影響,規(guī)定至少正確完成2道題便可過關(guān).
(1)記所抽取的3道題中,甲答對的題數(shù)為X,求X的分布列和期望;
(2)記乙能答對的題數(shù)為Y,求Y的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c為正實(shí)數(shù),求證:abc≥$\frac{a+b+c}{\frac{1}{{a}^{2}}+\frac{1}{^{2}}+\frac{1}{{c}^{2}}}$≥(a+b-c)(b+c-a)(c+a-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓心坐標(biāo)(1,0)的圓經(jīng)過點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若直線(1+a)x+y+1=0與該圓相切,求a的值.

查看答案和解析>>

同步練習(xí)冊答案