相關習題
 0  229071  229079  229085  229089  229095  229097  229101  229107  229109  229115  229121  229125  229127  229131  229137  229139  229145  229149  229151  229155  229157  229161  229163  229165  229166  229167  229169  229170  229171  229173  229175  229179  229181  229185  229187  229191  229197  229199  229205  229209  229211  229215  229221  229227  229229  229235  229239  229241  229247  229251  229257  229265  266669 

科目: 來源: 題型:選擇題

5.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(-1,3),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知集合A={x|x=3n-1,n∈Z},B={x|y=$\sqrt{25-{x^2}}$},則集合A∩B的元素個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{bn}的前n項和為Sn,且Sn=2bn-1(n∈N*),
(1)求b1,b2,b3,試猜想出{bn}的通項公式,并用數(shù)學歸納法加以證明;
(2)求和:b1${C}_{n}^{0}$+b2${C}_{n}^{1}$+b3${C}_{n}^{2}$+…+bn+1${C}_{n}^{n}$
(3)求和:(log2b1)•${C}_{n}^{0}$+(log2b2)•${C}_{n}^{1}$+(log2b3)•${C}_{n}^{2}$+…(log2bn+1)•${C}_{n}^{n}$
(4)若M(n)=4+(log2bn)•bn+3,試比較M(n)與8n2-4n的大小.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點A,設拋物線E:y2=4x上任意一點M到準線l的距離為d,則d+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.試比較3n-2n與(n-2)2n+2n2的大小,并用數(shù)學歸納法證明.

查看答案和解析>>

科目: 來源: 題型:解答題

20.求證:ln(23+1)+ln(33+1)+ln(43+1)+…+ln(n3+1)<$\frac{1}{4}$+3lnn!(n≥2,n∈N)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.直線OM的斜率與l的斜率的乘積為( 。
A.$\frac{b^2}{a^2}$B.-$\frac{b^2}{a^2}$
C.-$\frac{c^2}{a^2}$D.不確定,隨A,B的變化而變化

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知拋物線y2=2px(p>0)的準線與橢圓$\frac{x^2}{4}+\frac{y^2}{6}$=1相切,則p的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x2-x+2,則函數(shù)f(x)的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:解答題

16.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映某區(qū)域道路網(wǎng)在某特定時段內(nèi)暢通或擁堵實際情況的概念性指數(shù)值.交通指數(shù)范圍為(0,10),五個級別規(guī)定如下:
交通指數(shù)(0,2)[2,4)[4,6)[6,8)[8,10)
級別暢通基本暢通輕度擁堵中度擁堵嚴重擁堵
某人在工作日上班出行每次經(jīng)過的路段都在同一個區(qū)域內(nèi),他隨機記錄了上班的40個工作日早高峰時段(早晨7點至9點)的交通指數(shù)(平均值),其統(tǒng)計結(jié)果如直方圖所示.
(Ⅰ)據(jù)此估計此人260個工作日中早高峰時段(早晨7點至9點)中度擁堵的天數(shù);
(Ⅱ)若此人早晨上班路上所用時間近似為:暢通時30分鐘,基本暢通時35分鐘,輕度擁堵時40分鐘,中度擁堵時50分鐘,嚴重擁堵時70分鐘,以直方圖中各種路況的頻率作為每天遇到此種路況的概率,求此人上班路上所用時間X的數(shù)學期望.

查看答案和解析>>

同步練習冊答案