相關(guān)習(xí)題
 0  229565  229573  229579  229583  229589  229591  229595  229601  229603  229609  229615  229619  229621  229625  229631  229633  229639  229643  229645  229649  229651  229655  229657  229659  229660  229661  229663  229664  229665  229667  229669  229673  229675  229679  229681  229685  229691  229693  229699  229703  229705  229709  229715  229721  229723  229729  229733  229735  229741  229745  229751  229759  266669 

科目: 來(lái)源: 題型:解答題

4.(1)當(dāng)x<$\frac{3}{2}$時(shí),求函數(shù)y=x+$\frac{8}{2x-3}$的最大值;
(2)設(shè)0<x<2,求函數(shù)y=$\sqrt{x(4-2x)}$的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.若直線y=$\frac{1}{2}$x+b與曲線y=-$\frac{1}{2}$x+lnx相切,則b的值為-1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.P是曲線x2-y-lnx=0上的任意一點(diǎn),則點(diǎn)P到直線y=x-3的最小距離為( 。
A.1B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與y軸的交點(diǎn)坐標(biāo)為(0,-n).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.偶函數(shù)f(x)滿足f(1-x)=f(1+x),且在x∈[0,1]時(shí),f(x)=$\sqrt{2x-{x}^{2}}$,若直線kx-y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個(gè)交點(diǎn),則k的取值范圍是$(\frac{{\sqrt{15}}}{15},\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a-1)x-lnx(a∈R且a≠0).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當(dāng)a=2時(shí),函數(shù)f(x)是否存在“中值和諧切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知a,b是互異的負(fù)數(shù),A是a,b的等差中項(xiàng),G是a,b的等比中項(xiàng),則A與G的大小關(guān)系為A<G.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x+$\frac{1}{e^x}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=kx與曲線y=f(x)沒(méi)有公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x),g(x)=x2-ax-1,D是滿足方程x2+(k-2)x+2k-1=0的兩實(shí)數(shù)根分別在區(qū)間(0,1),(1,2)內(nèi)的實(shí)數(shù)k的取值范圍.
(1)求f(x)的極值;
(2)當(dāng)a∈D時(shí),求函數(shù)F(x)=f(x)-g(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2+1,g(x)=2ax+b(a,b∈R).
(1)若a=$\frac{1}{2}$,b=-2,求函數(shù)G(x)=f(x)g(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求證:函數(shù)F(x)=$\frac{g(x)}{f(x)}$有一個(gè)極小值和一個(gè)極大值點(diǎn);
(3)當(dāng)b=0時(shí),若對(duì)任意的x∈(0,∞),f(x)+g(x)<ex恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案