相關(guān)習(xí)題
 0  229581  229589  229595  229599  229605  229607  229611  229617  229619  229625  229631  229635  229637  229641  229647  229649  229655  229659  229661  229665  229667  229671  229673  229675  229676  229677  229679  229680  229681  229683  229685  229689  229691  229695  229697  229701  229707  229709  229715  229719  229721  229725  229731  229737  229739  229745  229749  229751  229757  229761  229767  229775  266669 

科目: 來源: 題型:解答題

4.(1)若tanα=3tan$\frac{π}{5}$,求$\frac{{cos(α-\frac{3π}{10})}}{{sin(α-\frac{π}{5})}}$的值;
(2)已知sin(α+$\frac{π}{3}}$)+sinα=$\frac{{5\sqrt{3}}}{13}$,求cos(α+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若集合M={α|α=sin$\frac{(5m-9)π}{3}$,m∈Z},N={β|β=cos$\frac{5(9-2n)π}{6}$,n∈Z},則M與N的關(guān)系是(  )
A.M?NB.M?NC.M=ND.M∩N=∅

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若角α的終邊過點(diǎn)P(2cos120°,$\sqrt{2}$sin225°),則cosα=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.等邊三角形ABC的邊長(zhǎng)為1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

20.求曲線y=lnx在點(diǎn)M(e,1)處的切線的斜率和切線的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知對(duì)任意實(shí)數(shù)x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,則m=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目: 來源: 題型:填空題

18.集合A,B滿足條件A∩B≠∅,A∪B={1,2,3,4,5},當(dāng)A≠B時(shí),我們將(A,B)和(B,A)視為兩個(gè)不同的集合對(duì),則滿足條件的集合對(duì)(A,B)共有211個(gè).

查看答案和解析>>

科目: 來源: 題型:解答題

17.用反證法證明:在三角形ABC中,若AB=AC,則∠B一定是銳角.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2ax+blnx在(1,f(1))處的切線方程為x-y+1=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=m[f(x)-x2+3lnx]+x2
①若函數(shù)y=g(x)上的點(diǎn)都在第一象限,求實(shí)數(shù)m的取值范圍;
②求證:對(duì)任意的自然數(shù)n(n≥2),不等式$\sqrt{2}$•$\root{3}{3}$•$\root{4}{4}$•$\root{5}{5}$…$\root{n}{n}$<e${\;}^{\frac{n(n-1)}{2}}$成立(其中e=2.71828…為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N*),則如圖中第10行所有數(shù)的和為2046.

查看答案和解析>>

同步練習(xí)冊(cè)答案