17.用反證法證明:在三角形ABC中,若AB=AC,則∠B一定是銳角.

分析 根據(jù)“∠B一定是銳角”的反面為“∠B是鈍角或直角”,據(jù)此直接寫(xiě)出逆命題,進(jìn)而證明即可.

解答 證明:假設(shè)∠B是鈍角或直角,
則因?yàn)锳B=AC,所以∠C鈍角或直角,
故此時(shí)三角形內(nèi)角和超過(guò)180°,與三角形內(nèi)角和定理相矛盾,
故假設(shè)不成立,原命題正確,即∠B一定是銳角.

點(diǎn)評(píng) 此題主要考查了反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrow7rsa19z$,$\overrightarrow{AE}$=$\overrightarrow{e}$,則$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$+$\overrightarrow9trg5v3$-$\overrightarrow{e}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z=2i-$\frac{5}{2-i}$,則|z|的值為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.一個(gè)盒子里裝有5張卡片,其中有紅色卡片3張,編號(hào)分別為1,2,3;白色卡片2張,編號(hào)分別為2,3.
從盒子中任取2張卡片(假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的2張卡片中,含有編號(hào)為3的卡片的概率.
(2)在取出的2張卡片中,紅色卡片編號(hào)的最大值設(shè)為X,求X=3的概率.
(3)求取出的2張卡片編號(hào)差的絕對(duì)值為1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某校共有1200名高三學(xué)生,若在一次考試中全校高三學(xué)生的數(shù)學(xué)成績(jī)X服從正態(tài)分布N(110,σ2)(σ>0),若P(100≤X≤110)=0.35,則該校高三學(xué)生數(shù)學(xué)成績(jī)?cè)?20分以上的有180人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若角α的終邊過(guò)點(diǎn)P(2cos120°,$\sqrt{2}$sin225°),則cosα=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓的方程為x2+y2-2ax-4ay+$\frac{9{a}^{2}}{2}$=0(a>0).
(1)求證:無(wú)論a取任何實(shí)數(shù)值,上述圓的圓心在同一直線上;
(2)試證明無(wú)論a取任何實(shí)數(shù)值,上述圓都有公切線,并求出公切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=2tan(x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{5π}{12}$]的值域是( 。
A.[-2,2]B.[-1,1]C.[-2$\sqrt{3}$,2]D.[-$\sqrt{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)的和Sn滿足an=$\frac{{S}_{n}^{2}}{{S}_{n}-1}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2$\frac{{S}_{n}}{{S}_{n+2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案