相關習題
 0  230264  230272  230278  230282  230288  230290  230294  230300  230302  230308  230314  230318  230320  230324  230330  230332  230338  230342  230344  230348  230350  230354  230356  230358  230359  230360  230362  230363  230364  230366  230368  230372  230374  230378  230380  230384  230390  230392  230398  230402  230404  230408  230414  230420  230422  230428  230432  230434  230440  230444  230450  230458  266669 

科目: 來源: 題型:解答題

15.如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點P
(Ⅰ)證明:PF∥面ECD;
(Ⅱ)求二面角B-EC-A的大。

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1C1C是矩形,側(cè)面AA1C1C⊥側(cè)面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中點.
(Ⅰ)求證:AC1∥平面CDB1;
(Ⅱ)求證:DA1⊥平面AA1C1C
(Ⅲ)若AA1=A1C1,點M在棱A1C1上,且A1M=λA1C1,若二面角M-AD-A1為30°,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖所示,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2AP=2CD=2,E是棱PC上一點,且CE=2PE.
(1)求證:AE⊥平面PBC;
(2)求二面角A-PC-D的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$.
(Ⅰ)求證:平面PAB⊥平面PDC;
(Ⅱ)線段AB上是否存在異于端點的點G,使二面角C-PD-G的余弦值為$\frac{1}{3}$?若存在,求AG;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知:多面體ABCDEF中,四邊形ABCD為直角梯形,AB⊥BC,AB=BC=2AD=2,平面BCEF⊥平面ABCD,四邊形BCEF為等腰梯形,EF=1,EC⊥AF,EF∥BC.
(1)求:E到平面ABCD的距離;
(2)求:二面角A-ED-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F(xiàn),H分別是PA,PD,AB的中點.
(1)求直線AH與平面EFH所成角的大小;
(2)求二面角H-EF-A的大。

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4,點F為C1D1的中點,點E在CC1上,且CE=1.
(Ⅰ)證明:AE⊥平面A1BD;
(Ⅱ)求二面角F-A1D-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,AC=2$\sqrt{3}$,AA1=1,∠BAC=90°,D為線段BC的中點.
(1)求異面直線B1D與AC所成角的大;
(2)求二面角D-A1B1-A的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,且PA=AB=2,E為PD中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)求二面角B-PC-D的大。

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,長方體ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一點,且滿足B1D⊥平面ACE.
(Ⅰ)求證:A1D⊥AE;
(Ⅱ)求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

同步練習冊答案