相關習題
 0  230412  230420  230426  230430  230436  230438  230442  230448  230450  230456  230462  230466  230468  230472  230478  230480  230486  230490  230492  230496  230498  230502  230504  230506  230507  230508  230510  230511  230512  230514  230516  230520  230522  230526  230528  230532  230538  230540  230546  230550  230552  230556  230562  230568  230570  230576  230580  230582  230588  230592  230598  230606  266669 

科目: 來源: 題型:選擇題

14.如圖,網格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是一幾何體的三視圖,則該幾何體的表面積為( 。
A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm2

查看答案和解析>>

科目: 來源: 題型:選擇題

13.如圖,網格紙上小正方形的邊長為1,粗實(虛)線畫出的是某多面體的三視圖,則該多面體的體積為(  )
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PA⊥BC,平面PACD為直角梯形,∠PAC=90°,PD∥AC,PA=AB=PD=1,AC=2,∠BAC=120°
(1)求證:PA⊥AB;
(2)求直線BD與平面PACD所成角的正弦值;
(3)求二面角D-BC-A的平面角的正切值.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知某三棱錐的三視圖如圖所示,則該三棱錐的最長棱的長是( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數f(x)=ex-$\frac{1}{{e}^{|x|}}$.
(1)若f(x)=2,求x的值;
(2)若etf(2t)+mf(t)≥0對t∈[1,2]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

9.過三點(3,10),(7,20),(11,24)的線性回歸方程是$\widehaty=5.75+1.75x$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.一臺機器由于使用時間較長,但還可以使用,它按不同的轉速生產出來的某機器零件有一些會有缺點,每小時生產有缺點零件的多少隨機器運轉的速度而變化,如表是抽樣試驗結果:
轉速x/(rad/s)1614128
每小時生產有缺點的零件數y/件11985
若實際生產中,允許每小時的產品中有缺點的零件數最多為10個,求機器的轉速應該控制所在的范圍.$\left\{{\begin{array}{l}{b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}}\\{a=\overline y-b\overline x}\end{array}}\right.$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬訂的價格進行試銷得到如下數據:
單價x(元)88.28.48.68.89
銷量y(件)928283807568
(I)求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.其中$\widehat{a}$=250
(Ⅱ)預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,且該產品的成本是4元每件,為使工廠獲得最大利潤,該產品的單價應定為多少元?

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知方程$\widehat{y}$=0.85x-82.71是根據女大學生的身高預報她的體重的回歸方程,其中x的單位是cm,$\widehat{y}$的單位是kg,那么針對某個體(160,53)的殘差是-0.29.

查看答案和解析>>

科目: 來源: 題型:解答題

5.某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費x1和年銷售量y1(i=1,2,…,8)數據作了初步處理,得到下面的散點圖及一些統計量的值.

$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$$\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$
46.656.36.8289.81.61469108.8
表中w1=$\sqrt{x}$1,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^n{w_i}$
(Ⅰ)根據散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(Ⅰ)的判斷結果及表中數據,建立y關于x的回歸方程;
(Ⅲ)已知這種產品的年利率z與x、y的關系為z=0.2y-x.根據(Ⅱ)的結果回答下列問題:
(1)年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
(2)年宣傳費x為何值時,年利率的預報值最大?
附:對于一組數據(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ$=$\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline{v)}}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\widehatα$=$\overline v$-$\widehatβ\overline u$.

查看答案和解析>>

同步練習冊答案