11.已知某三棱錐的三視圖如圖所示,則該三棱錐的最長棱的長是(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{2}$

分析 由三視圖可知:該幾何體是一個三棱錐.其中PA⊥底面ABC,PA=AC=CB=1.即可得出.

解答 解:由三視圖可知:該幾何體是一個三棱錐.其中PA⊥底面ABC,PA=AC=CB=1.
則該三棱錐的最長棱的長是PB,PB=$\sqrt{P{A}^{2}+A{B}^{2}}$=$\sqrt{{1}^{2}+{2}^{2}+{1}^{2}}$=$\sqrt{6}$.
故選;A.

點(diǎn)評 本題考查了三視圖的有關(guān)知識、線面垂直的性質(zhì)、勾股定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率小于0,求f(x)的單調(diào)區(qū)間;
(2)對任意的a∈[$\frac{3}{2}$,$\frac{5}{2}$],函數(shù)g(x)=f(x)-$\frac{λ}{x}$在區(qū)間[1,2]上為增函數(shù),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在底面是菱形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=3,AB=2,∠ABC=60°,點(diǎn)E為PC的中點(diǎn),點(diǎn)F在PD上,且PF=2FD.
(Ⅰ)證明:BE∥平面AFC;
(Ⅱ)求二面角F-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在多面體ABC-A1B1C1中,四邊形A1B1BA是正方形,AC=AB=1,△A1BC為等邊三角形,$\overrightarrow{BC}$=2$\overrightarrow{{B}_{1}{C}_{1}}$.
(1)求證:AC1⊥BC;
(2)求二面角C-A1C1-B的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知方程$\widehat{y}$=0.85x-82.71是根據(jù)女大學(xué)生的身高預(yù)報她的體重的回歸方程,其中x的單位是cm,$\widehat{y}$的單位是kg,那么針對某個體(160,53)的殘差是-0.29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一組具有線性相關(guān)關(guān)系的變量(x,y)分別為(2,3),(4,4),(5,6),(6,5),(8,7),且這組數(shù)據(jù)的回歸直線方程為$\stackrel{∧}{y}$=0.65x+a,則a等于( 。
A.0.75B.1.25C.1.75D.3.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱豬ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)求二面角B1-CE-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.變量x與變量y之間的一組數(shù)據(jù)為:
X2345
y2.53m4.5
y與x具有線性相關(guān)關(guān)系,且其回歸直線方程為$\widehat{y}$=bx+1.05,已知x每增加1,則y約增加0.7,則m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.化簡:a${\;}^{\frac{2}{3}}$•a${\;}^{\frac{1}{5}}$•a${\;}^{\frac{7}{15}}$(a>0).

查看答案和解析>>

同步練習(xí)冊答案