相關(guān)習(xí)題
 0  230435  230443  230449  230453  230459  230461  230465  230471  230473  230479  230485  230489  230491  230495  230501  230503  230509  230513  230515  230519  230521  230525  230527  230529  230530  230531  230533  230534  230535  230537  230539  230543  230545  230549  230551  230555  230561  230563  230569  230573  230575  230579  230585  230591  230593  230599  230603  230605  230611  230615  230621  230629  266669 

科目: 來源: 題型:填空題

4.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點Z表示復(fù)數(shù)z,則復(fù)數(shù)$\frac{z}{1+2i}$=$\frac{3}{5}+\frac{4}{5}i$.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.點M在拋物線C:x2=2py(p>0)上,以M為圓心的圓與x軸相切于點N,過點N作直線與C相切于點P(異于點O),OP的中點為Q,則( 。
A.點Q在圓M內(nèi)B.點Q在圓M上
C.點Q在圓M外D.以上結(jié)論都有可能

查看答案和解析>>

科目: 來源: 題型:選擇題

2.函數(shù)f(x)圖象如圖所示,則f(x)的解析式可能是(  )
A.f(x)=lnx-sinxB.f(x)=lnx+cosxC.f(x)=lnx+sinxD.f(x)=lnx-cosx

查看答案和解析>>

科目: 來源: 題型:選擇題

1.“a=4或a=-3“是”函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10“的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

20.定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)是f′(x),若x•f′(x)+f(x)<0,則下列結(jié)論一定正確的是( 。
A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知過雙曲線Г:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F2作圓x2+y2=a2的切線,交雙曲線Г的左支交于點A,且AF1⊥AF2,則雙曲線的漸近線方程是( 。
A.y=±2xB.y=±$\frac{1}{2}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目: 來源: 題型:選擇題

18.下列選項中,與其他三個選項所蘊含的數(shù)學(xué)推理不同的是( 。
A.獨腳難行,孤掌難鳴B.前人栽樹,后人乘涼
C.物以類聚,人以群分D.飄風(fēng)不終朝,驟雨不終日

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=loga(x+1),函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=a對稱
(1)求函數(shù)g(x)的解析式,并指出其定義域;
(2)設(shè)函數(shù)h(x)=g(x)-f(-x),若對任意的x∈[0,1),總有h(x)≥3成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x}$-ax+(1+a)lnx,a∈R,且y=f(x)在x=1處的切線垂直于y軸.
(1)若a=-1,求y=f(x)在x=$\frac{1}{2}$處的切線方程;
(2)討論f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

15.某數(shù)學(xué)老師對所任教的兩個班級各抽取30名學(xué)生進行測試,分數(shù)分布如表:
分數(shù)區(qū)間45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成績120分以上為優(yōu)秀,求從乙班參加測試的成績在90分以上(含90分)的學(xué)生中,隨機任取2名學(xué)生,恰有1人為優(yōu)秀的概率;
(2)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表,則犯錯概率小于0.1的前提下,是否有足夠的把握認為學(xué)生的數(shù)學(xué)成績優(yōu)秀與否和班級有關(guān)?
優(yōu)秀不優(yōu)秀總計
甲班62430
乙班32730
總計95160
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的臨界值供參考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

同步練習(xí)冊答案