相關(guān)習題
 0  230652  230660  230666  230670  230676  230678  230682  230688  230690  230696  230702  230706  230708  230712  230718  230720  230726  230730  230732  230736  230738  230742  230744  230746  230747  230748  230750  230751  230752  230754  230756  230760  230762  230766  230768  230772  230778  230780  230786  230790  230792  230796  230802  230808  230810  230816  230820  230822  230828  230832  230838  230846  266669 

科目: 來源: 題型:填空題

9.若sin4α+cos4α=1,則sinα+cosα等于±1.

查看答案和解析>>

科目: 來源: 題型:填空題

8.觀察下列式子:
$\begin{array}{l}1+\frac{1}{2^2}<1+\frac{1}{2}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}<1+\frac{2}{3}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<1+\frac{3}{4}\end{array}$
根據(jù)以上式子可以猜想:1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}$<1+$\frac{n-1}{n}$(n≥2).

查看答案和解析>>

科目: 來源: 題型:填空題

7.數(shù)列1,2,3,4,5,6,…,n,…是一個首項為1,公差為1的等差數(shù)列,其通項公式an=n,前n項和Sn=$\frac{(1+n)n}{2}$.若將該數(shù)列排成如圖的三角形數(shù)陣的形式,根據(jù)以上排列規(guī)律,數(shù)陣中的第n行(n≥3)的第3個(從左至右)數(shù)是$\frac{(n-1)n}{2}$+3.

查看答案和解析>>

科目: 來源: 題型:填空題

6.如圖,對大于等于2的自然數(shù)m的n次冪進行如圖方式的“分裂”,如23的“分裂”中最大的數(shù)是5,34的“分裂”中最大的數(shù)是29,那么20163的“分裂”中最大的數(shù)是20162+2015.(寫出算式即可)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.觀察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,則m9+n9=( 。
A.29B.47C.76D.123

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,x∈R,則f(x)零點的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

3.某冷飲店為了解氣溫對其營業(yè)額的影響,隨機記錄了該店1月份銷售淡季中的日營業(yè)額y(單位:百元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如表所示:
x367910
y1210887
(Ⅰ)判定y與x的是正相關(guān)還是負相關(guān);并求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若該地1月份某天的最低氣溫為0℃,預測該店當日的營業(yè)額
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.正整數(shù)按圖所示的規(guī)律排列:

則上起第2013行,左起第2014列的數(shù)應(yīng)為( 。
A.2013×2014B.2013+2014C.20142D.20132

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$
(1)若方程f(x)=4有兩個實根,求實數(shù)b的取值范圍;
(2)若f(f($\frac{5}{6}$))=4,求實數(shù)b的值.

查看答案和解析>>

科目: 來源: 題型:填空題

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根據(jù)以上事實,由歸納推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
當n∈N*時,1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

同步練習冊答案