相關(guān)習(xí)題
 0  230777  230785  230791  230795  230801  230803  230807  230813  230815  230821  230827  230831  230833  230837  230843  230845  230851  230855  230857  230861  230863  230867  230869  230871  230872  230873  230875  230876  230877  230879  230881  230885  230887  230891  230893  230897  230903  230905  230911  230915  230917  230921  230927  230933  230935  230941  230945  230947  230953  230957  230963  230971  266669 

科目: 來(lái)源: 題型:選擇題

19.下列關(guān)于殘差的敘述正確的是(  )
A.殘差就是隨機(jī)誤差B.殘差就是方差
C.殘差都是正數(shù)D.殘差可用來(lái)判斷模型擬合的效果

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.推理“①矩形是平行四邊形;②三角形不是平行四邊形;③所以三角形不是矩形.”中的大前提是( 。
A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測(cè)指標(biāo)劃分為:指標(biāo)大于或者等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100)
元件甲81240328
元件乙71840296
(Ⅰ)試分別估計(jì)元件甲,乙為正品的概率;
(Ⅱ)在(Ⅰ)的前提下,記X為生產(chǎn)1件甲和1件乙所得的正品數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.已知隨機(jī)變量X服從正態(tài)分布X~N(2,σ2),P(X>4)=0.3,則P(X<0)的值為0.3.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.在10件產(chǎn)品中,有3件一等品,7件二等品,從這10件產(chǎn)品中任取3件,則取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率( 。
A.$\frac{1}{120}$B.$\frac{7}{40}$C.$\frac{11}{60}$D.$\frac{21}{40}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.下列說(shuō)法中,正確說(shuō)法的個(gè)數(shù)是(  )
①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”;
②“x>1”是“|x|>1”的充分不必要條件;
③集合A={1},B={x|ax-1=0},若B⊆A,則實(shí)數(shù)a的所有可能取值構(gòu)成的集合為{1}.
A.0B.1C.2D.3

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2015+a2016>0,a2015•a2016<0,則使前n項(xiàng)和Sn取得最大值的自然數(shù)n是( 。
A.1 007B.1 008C.2 015D.2 016

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知等比數(shù)列{an}滿足a2+a3=$\frac{4}{3}$,a1a4=$\frac{1}{3}$,公比q<1.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和;
(2)設(shè)bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,數(shù)列{bnbn+2}的前n項(xiàng)和為Tn,若對(duì)于任意的正整數(shù),都有Tn<m2-m+$\frac{3}{4}$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且有a2+b2-c2=4S△ABC
(1)求角C的大。
(2)若c=$\sqrt{2}$,求a-$\frac{\sqrt{2}}{2}$b的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.若定義在(0,+∞)上的函數(shù)f(x)=2x+$\frac{a}{x}$在x=3時(shí)取得最小值,則a=18.

查看答案和解析>>

同步練習(xí)冊(cè)答案