相關習題
 0  230835  230843  230849  230853  230859  230861  230865  230871  230873  230879  230885  230889  230891  230895  230901  230903  230909  230913  230915  230919  230921  230925  230927  230929  230930  230931  230933  230934  230935  230937  230939  230943  230945  230949  230951  230955  230961  230963  230969  230973  230975  230979  230985  230991  230993  230999  231003  231005  231011  231015  231021  231029  266669 

科目: 來源: 題型:解答題

13.已知函數f(x)=|x2-1|
(1)解不等式f(x)≤2+2x;
(2)設a>0,若關于x的不等式f(x)+5≤ax解集非空,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,點E、F分別是正方體ABCD-A1B1C1D1的棱AD、AA1的中點,G是棱CC1上一點.
(Ⅰ)求證:平面A1B1E⊥平面D1FG;
(Ⅱ)若AB=2,CG=2-$\sqrt{3}$,M是棱DD1的中點,點N在線段D1G上,MN∥DC,求二面角D1-FN-M的大。

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,直線AB為⊙O的切線,切點為B,點C、D在圓上,DB=DC,作BE⊥BD交圓于點E
(1)證明:∠CBE=∠ABE;
(2)設⊙O的半徑為2,BC=2$\sqrt{3}$,延長CE交AB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程[f(x)]2-af(x)+2=0恰有四個不同的實根,則實數a的取值范圍是( 。
A.(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞)B.(2$\sqrt{2}$,3)C.(2,3)D.(2$\sqrt{2}$,4)

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,AB是⊙O的直徑,C是⊙O上一點,AC∥BP,BM切⊙O于B,BM交CP于M,且CM=MP.
(1)求證:CP與⊙O相切;
(2)已知CP與AB交于N,AB=2,CN=$\sqrt{3}$,求AC的長.

查看答案和解析>>

科目: 來源: 題型:解答題

8.曲線$y=-\frac{{{{(x-4)}^2}}}{4}$上任意一點為A,點B(2,0)為線段AC的中點.
(Ⅰ)求動點C的軌跡f(x)的方程;
(Ⅱ)過軌跡E的焦點F作直線交軌跡E于M、N兩點,在圓x2+y2=1上是否存在一點P,使得PM、PN分別為軌跡E的切線?若存在,求出軌跡E與直線PM、PN所圍成的圖形的面積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,2),點M的極坐標為$(3,\frac{π}{2})$,若直線l過點P,且傾斜角為$\frac{π}{6}$,圓C以M為圓心,3為半徑.
(Ⅰ)求直線l的參數方程和圓C的極坐標方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|PA|•|PB|.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{f(x-1),x>0}\end{array}\right.$,若函數g(x)=f(x)-x-a只有一個零點,則實數a的取值范圍是(  )
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,點A、B、D、E在⊙O上,ED、AB的延長線交于點C,AD、BE交于點F,AE=EB=BC.
(1)證明:$\widehat{DE}$=$\widehat{BD}$;
(2)若DE=4,AD=8,求DF的長.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知正三角形ABC的頂點B,C在平面α內,頂點A在平面α上的射影為A′,若△A′BC為銳角三角形,則二面角A-BC-A′大小的余弦值的取值范圍是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

同步練習冊答案