相關(guān)習題
 0  230901  230909  230915  230919  230925  230927  230931  230937  230939  230945  230951  230955  230957  230961  230967  230969  230975  230979  230981  230985  230987  230991  230993  230995  230996  230997  230999  231000  231001  231003  231005  231009  231011  231015  231017  231021  231027  231029  231035  231039  231041  231045  231051  231057  231059  231065  231069  231071  231077  231081  231087  231095  266669 

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-alnx-x(a≠0)
(1)若f(x)在x=$\frac{3}{4}$處取得極值,求實數(shù)a的值;
(2)若a>0,設A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)f(x)圖象上的任意兩點,記直線AB的斜率為k,求證:f′($\frac{{x}_{1}+{x}_{2}}{2}$)>k.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知不等式x2-2x+5-2a≥0
(Ⅰ)若不等式對于任意實數(shù)x恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若存在實數(shù)a∈[4,6]使得該不等式成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+a)(a∈R).
(Ⅰ)曲線y=f(x)在點(1,f(1))處的切線與直線x-2y+1=0平行,求a的值;
(Ⅱ)當a=0時,若函數(shù)g(x)=f(x)+$\frac{1}{2}$x2-mx(m≥$\frac{5}{2}$)的極值點x1,x2(x1<x2)恰好是函數(shù)h(x)=f(x)-cx2-bx的零點,求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖,△CDE所在的平面與正方形ABCD所在的平面相交于CD,且AE⊥平面ABCD,AB=2AE=2.
(1)求證:平面ABCD⊥平面ADE
(2)設點F是棱BC的中點,求直線DF與平面CDE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,三棱柱ADE-BCF中,四邊形ABCD為平行四邊形,DE⊥平面ABCD,AD=DE=1,AB=2,∠BCD=60°.
(I)求證:BD⊥AE;
(Ⅱ)若GE=$\frac{1}{2}$DE,求直線CG與平面BDF所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

14.如圖,割線PAB交于圓O于A、B兩點,PO交于圓O于C,D在AB上,且滿足CD2=DA•DB.
(Ⅰ)求證:OD⊥CD;
(Ⅱ)若PA=6,AB=$\frac{22}{3}$,PO=12,求PC的長.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,AB切⊙O于點B,點G為AB的中點,過G作⊙O的割線交⊙O于點C、D,連接AC并延長交⊙O于點E,連接AD并交⊙O于點F,求證:EF∥AB.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,四邊形ABCD是邊長為1的正方形,平面ADE⊥平面ABCD,DE⊥AD,BF∥DE,DE=BF=1,M為BC的中點.
(I)求異面直線AE與MF所成的角的余弦值;
(Ⅱ)在線段AF上是否存在一點N,使平面DMN與平面ABCD所成的角的余弦值為$\frac{3\sqrt{14}}{14}$?若存在,請確定點N的位置;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在平面直角坐標系xoy中,直線$\left\{\begin{array}{l}x={x_0}+tcosα\\ y=tsinα\end{array}$,(t為參數(shù))與拋物線y2=2px(p>0)相交于橫坐標分別為x1,x2的A,B兩點
(1)求證:x02=x1x2;
(2)若OA⊥OB,求x0的值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點D為線段CF上任意一點,延長AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF=$\sqrt{3}$,求AD•AE的值.

查看答案和解析>>

同步練習冊答案