相關(guān)習(xí)題
 0  231583  231591  231597  231601  231607  231609  231613  231619  231621  231627  231633  231637  231639  231643  231649  231651  231657  231661  231663  231667  231669  231673  231675  231677  231678  231679  231681  231682  231683  231685  231687  231691  231693  231697  231699  231703  231709  231711  231717  231721  231723  231727  231733  231739  231741  231747  231751  231753  231759  231763  231769  231777  266669 

科目: 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,且A,$\frac{B}{4}$,C成等差數(shù)列.
(1)若b=$\sqrt{13}$,a=3,求c的值;
(2)設(shè)y=sinA•sinC,求y的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,求直線l與曲線C相交所成的弦的弦長.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),試在橢圓C上求一點P,使得點P到直線l的距離最。

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).求曲線C的直角坐標方程,并指出曲線的類型.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.數(shù)列{an}滿足a1=1,且對任意的n∈N*都有an+1=an+n+1,則數(shù)列{$\frac{1}{a_n}}$}的 前100項的和為( 。
A.$\frac{101}{100}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{101}{200}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.設(shè)a,b均為不等于1的正數(shù),利用對數(shù)的換底公式證明:
(1)logab=$\frac{1}{lo{g}_a}$;
(2)log${\;}_{{a}^{n}}$bm=$\frac{m}{n}$logab(m∈R,n∈R,n≠0).

查看答案和解析>>

科目: 來源: 題型:解答題

6.求函數(shù)y=-x2+2ax(其中a為常數(shù))在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x)=f(x+1)-f(x-1)(x∈R),且f(2)=1,則f(2012)=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若函數(shù)y=f(x)的圖象與函數(shù)y=sin(x+$\frac{π}{4}$)的圖象關(guān)于P($\frac{π}{2}$,0)對稱,則f(x)解析式為( 。
A.f(x)=sin(x-$\frac{π}{4}$)B.f(x)=-sin(x-$\frac{π}{4}$)C.f(x)=-cos(x+$\frac{π}{4}$)D.f(x)=cos(x-$\frac{π}{4}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

3.在單位圓中,一條弦AB的長度為$\sqrt{3}$,則該弦AB所對的弧長l為( 。
A.$\frac{2}{3}$πB.$\frac{3}{4}$πC.$\frac{5}{6}$πD.π

查看答案和解析>>

同步練習(xí)冊答案