相關(guān)習(xí)題
 0  231636  231644  231650  231654  231660  231662  231666  231672  231674  231680  231686  231690  231692  231696  231702  231704  231710  231714  231716  231720  231722  231726  231728  231730  231731  231732  231734  231735  231736  231738  231740  231744  231746  231750  231752  231756  231762  231764  231770  231774  231776  231780  231786  231792  231794  231800  231804  231806  231812  231816  231822  231830  266669 

科目: 來源: 題型:解答題

11.設(shè)二次函數(shù)f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;
(2)當(dāng)b=1時(shí),若對(duì)任意x∈[0,1],-1≤f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=10,a7=14.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若cn=$\frac{1}{4}$anbn,Tn為數(shù)列{cn}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,角A為鈍角,且sinA=$\frac{3}{5}$,點(diǎn)P、Q分別是在角A的兩邊上不同于點(diǎn)A的動(dòng)點(diǎn).
(1)若AP=5,PQ=3$\sqrt{5}$,求AQ的長;
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=$\frac{12}{13}$,求cos(α+β)和cos(2α+β)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a,b,c成等比數(shù)列,且a2-c2=ac-bc,則角A的大小及$\frac{bsinB}{c}$的值分別為( 。
A.$\frac{π}{6}$,$\frac{1}{2}$B.$\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}$C.$\frac{π}{3}$,$\frac{1}{2}$D.$\frac{π}{6}$,$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知{an}為等比數(shù)列,若a1+a4=8,a3+a6=2,則公比q的值為( 。
A.±2B.$±\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.大學(xué)畢業(yè)生小張到甲、乙、丙三個(gè)單位應(yīng)聘,各單位是否錄用他是相互獨(dú)立的,其被錄用的概率分別為$\frac{4}{5}$,$\frac{2}{3}$,$\frac{3}{4}$(允許小張被多個(gè)單位同時(shí)錄用),
(1)求小張沒有被錄用的概率;
(2)求小張恰被兩個(gè)單位錄用的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

5.(1+x)4+(1+x)5+…+(1+x)9展開式中,x3項(xiàng)的系數(shù)為209.(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.在(1+x+$\frac{1}{{x}^{2015}}$)10的展開式中,含x2項(xiàng)的系數(shù)為( 。
A.10B.30C.45D.120

查看答案和解析>>

科目: 來源: 題型:解答題

3.(1)用分析法證明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用綜合法證明不等式:若a+b+c=1,則ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知命題p:“x>1”,命題q:“$\frac{1}{x}$<1”,則p是q的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案