相關(guān)習(xí)題
 0  231674  231682  231688  231692  231698  231700  231704  231710  231712  231718  231724  231728  231730  231734  231740  231742  231748  231752  231754  231758  231760  231764  231766  231768  231769  231770  231772  231773  231774  231776  231778  231782  231784  231788  231790  231794  231800  231802  231808  231812  231814  231818  231824  231830  231832  231838  231842  231844  231850  231854  231860  231868  266669 

科目: 來源: 題型:選擇題

12.某區(qū)實驗幼兒園對兒童記憶能力x與識圖能力y進(jìn)行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為y=$\frac{4}{5}$x+a,則a=( 。
A.0.1B.-0.1C.0.2D.-0.2

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B為( 。
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知|$\overrightarrow a}$|=3,|$\overrightarrow b}$|=4,且$\overrightarrow a$與$\overrightarrow b$不共線,若($\overrightarrow a$+k$\overrightarrow b$)⊥($\overrightarrow a$-k$\overrightarrow b$),則k=$±\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.在1,2之間插入兩個數(shù),使之成為一個等差數(shù)列,則其公差為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{2}{x+1}$,點O為坐標(biāo)原點,點An(n,f(n))(n∈N*),向量$\overrightarrow j=(0,1)$,θn是向量$\overrightarrow{O{A_n}}$與$\overrightarrow j$的夾角,則$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_1}}}{{sin{θ_1}}}+…+\frac{{cos{θ_{2016}}}}{{sin{θ_{2016}}}}$=( 。
A.$\frac{2015}{1008}$B.$\frac{2017}{2016}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.根據(jù)如圖的框圖,當(dāng)輸入x為2016時,輸出的y=(  )
A.28B.10C.4D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知集合A={x|x2-x-2<0},B=$\{x|y=lg\frac{1-x}{1+x}\}$,在區(qū)間(-3,3)上任取一實數(shù)x,則x∈A∩B的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,則f(x)的定義域為( 。
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.曲線y=$\frac{1}{x}$與y=x2在它們交點處的兩條切線與x軸所圍成的三角形的面積為( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.1D.$\frac{3}{8}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn=-3n2+49n.
(1)請問數(shù)列{an}是否為等差數(shù)列?如果是,請證明;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案