相關(guān)習(xí)題
 0  232011  232019  232025  232029  232035  232037  232041  232047  232049  232055  232061  232065  232067  232071  232077  232079  232085  232089  232091  232095  232097  232101  232103  232105  232106  232107  232109  232110  232111  232113  232115  232119  232121  232125  232127  232131  232137  232139  232145  232149  232151  232155  232161  232167  232169  232175  232179  232181  232187  232191  232197  232205  266669 

科目: 來源: 題型:解答題

2.已知在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸)中,曲線C2的方程為ρsin2θ=2pcosθ(p>0),曲線C1、C2交于A、B兩點(diǎn).
(Ⅰ)若p=2且定點(diǎn)P(0,-4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比數(shù)列,求p的值.

查看答案和解析>>

科目: 來源: 題型:填空題

1.?dāng)?shù)列{an}的前n項(xiàng)和a1+a2+a3+…+an可簡記為$\sum_{i=1}^n{a_i}$.已知數(shù)列{an}滿足a1=1,且${a_{n+1}}={a_n}+\frac{1}{n+1}$,n∈N,則$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$=1015560.

查看答案和解析>>

科目: 來源: 題型:填空題

20.在凸四邊形ABCD中,角A=C=60°,AD=BC=2,且AB≠CD,則四邊形ABCD的面積為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知函數(shù)f(x)=sinx+ex+x2013,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1=fn′(x),則f2014(x)=( 。
A.sinx+exB.cosx+exC.-sinx+exD.-cosx+ex

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知集合A={x∈Z||x2-4x|<4},$B=\{y∈{N_+}|{({\frac{1}{2}})^y}≥\frac{1}{8}\}$,記cardA為集合A的元素個(gè)數(shù),則下列說法不正確的是(  )
A.cardA=5B.cardB=3C.card(A∩B)=2D.card(A∪B)=5

查看答案和解析>>

科目: 來源: 題型:填空題

16.等比數(shù)列x,3x+3,6x+6,…則x的值為:-3.

查看答案和解析>>

科目: 來源: 題型:解答題

15.現(xiàn)有7名世博會(huì)志愿者,其中志愿者A1、A2、A3通曉日語,B1、B2通曉俄語,C1、C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.已知每個(gè)志愿者被選中的機(jī)會(huì)均等.
(Ⅰ)求A1被選中的概率;
(Ⅱ)求B1和C1至少有一人被選中的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

14.原始社會(huì)時(shí)期,人們通過在繩子上打結(jié)來計(jì)算數(shù)量,即“結(jié)繩計(jì)數(shù)”.當(dāng)時(shí)有位父親,為了準(zhǔn)確記錄孩子的成長天數(shù),在粗細(xì)不同的繩子上打結(jié),由細(xì)到粗,滿七進(jìn)一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$對一切n都成立的最小正整數(shù)k的值;
(3)設(shè)$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$問是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案