相關(guān)習題
 0  232124  232132  232138  232142  232148  232150  232154  232160  232162  232168  232174  232178  232180  232184  232190  232192  232198  232202  232204  232208  232210  232214  232216  232218  232219  232220  232222  232223  232224  232226  232228  232232  232234  232238  232240  232244  232250  232252  232258  232262  232264  232268  232274  232280  232282  232288  232292  232294  232300  232304  232310  232318  266669 

科目: 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{9}$-$\frac{y^2}{m}$=1的離心率為$\frac{{\sqrt{14}}}{3}$,則雙曲線焦點F到漸近線的距離為( 。
A.2B.$\sqrt{14}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.對于函數(shù)f(x),若存在實數(shù)對(a,b),使得等式f(a+x)•f(a-x)=b對定義域中的每一個x都成立,則稱函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f(x)=4x是否為“(a,b)型函數(shù)”,并說明理由;
(2)已知函數(shù)g(x)是“(1,4)型函數(shù)”,且當x∈[0,1]時,g(x)=x2-m(x-1)+1(m>0),若當x∈[0,2]時,都有1≤g(x)≤3成立,試求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.(1)設(3x-1)4=a0+a1x+a2x2+a3x3+a4x4
①求a0+a1+a2+a3+a4;
②求a0+a2+a4;
③求a1+a2+a3+a4;
(2)求S=C271+C272+…+C2727除以9的余數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知tanα=3,求下列各式的值:
(1)$\frac{sinα+3cosα}{2sinα+5cosα}$;         
(2)sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目: 來源: 題型:填空題

5.地球赤道的半徑為6370km,則赤道上1弧度角所對的圓弧長為6370km.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.一物體在力F(x)=5x+2(x單位為m,F(xiàn)單位為N)的作用下,沿著與力F相同的方向從x=0處運動到x=4處,則力F所作的功是( 。
A.40B.42C.48D.52

查看答案和解析>>

科目: 來源: 題型:解答題

3.莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù),現(xiàn)分別從甲、乙兩組中各隨機選取一名同學.
(Ⅰ)求這兩名同學的植樹總棵數(shù)y的分布列;
(Ⅱ)每植一棵樹可獲10元,求這兩名同學獲得錢數(shù)的數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在梯形ABCD中,AB∥DC,AD⊥AB,AD=DC=1,AB=2,點P,Q分別在線段BC,CD上運動,且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$.
(1)當λ=$\frac{1}{2}$時,求|$\overrightarrow{AP}$|;
(2)求$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2+ex-$\frac{1}{2}$(x<0)與g(x)=x2+ln(x-a)的圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( 。
A.$(-\sqrt{e},+∞)$B.$(-\frac{1}{{\sqrt{e}}},\sqrt{e})$C.$(-\sqrt{e},\frac{1}{{\sqrt{e}}})$D.$(-\frac{1}{{\sqrt{e}}},+∞)$

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=e-x+$\frac{nx}{mx+n}$.
(1)若m=0,n=1,求函數(shù)f(x)的最小值;
(2)若m>0,n>0,f(x)在[0,+∞)上的最小值為1,求$\frac{m}{n}$的最大值.

查看答案和解析>>

同步練習冊答案