相關(guān)習(xí)題
 0  232829  232837  232843  232847  232853  232855  232859  232865  232867  232873  232879  232883  232885  232889  232895  232897  232903  232907  232909  232913  232915  232919  232921  232923  232924  232925  232927  232928  232929  232931  232933  232937  232939  232943  232945  232949  232955  232957  232963  232967  232969  232973  232979  232985  232987  232993  232997  232999  233005  233009  233015  233023  266669 

科目: 來源: 題型:選擇題

4.拋2顆骰子,則向上點數(shù)不同的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+2ax,
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在在區(qū)間[1,+∞)上的最小值為0,求a的值.
請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分,作答時請寫清題號.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知;a,b表示不同的直線,α,β表示不同的平面,現(xiàn)有下列命題:①$\left.\begin{array}{l}{a∥b}\\{a∥α}\end{array}\right\}$⇒b∥α,②$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b,③$\left.\begin{array}{l}{a⊥b}\\{α∥β}\end{array}\right\}$⇒a⊥α,④$\left.\begin{array}{l}{a∥α}\\{α∥β}\end{array}\right\}$⇒α∥β,其中真命題有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=ex+2ax.
(l)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥e-x恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與拋物線C的交點為Q,且|QF|=$\frac{5}{4}$|PQ|.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點F1與拋物線C的焦點重合,且離心率為$\frac{1}{2}$•
(1)求拋物線C和橢圓E的方程;
(2)若過橢圓E的左焦點F2的直線l與橢圓交于A、B兩點,求三角形OAB(O為坐標(biāo)原點)的面積S△OAB的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=$\frac{3}{2}({a_n}-1)$.
(1)求a1的值,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}為等差數(shù)列,且b3+b5=-8,2b1+b4=0,設(shè)cn=an•bn,數(shù)列{cn}的前n項和為Tn,證明:對任意$n∈N*,{T_n}+(n-\frac{5}{2})•{3^{n+1}}$是一個與n無關(guān)的常數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

18.(1)已知$C_{15}^{3x-2}=C_{15}^{x+1}$,求$C_{10}^x+C_{10}^{x-1}$的值;
(2)若${(\root{3}{x}-\frac{1}{x})^n}(n∈N)$的展開式中第3項為常數(shù)項,求n.

查看答案和解析>>

科目: 來源: 題型:填空題

17.如果執(zhí)行下列偽代碼,則輸出的值是13

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知i為虛數(shù)單位,若復(fù)數(shù)z=$\frac{1-2i}{1+i}$,則復(fù)數(shù)z的實部與虛部的和是-2.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$時,所表示的平面區(qū)域為D,則z=x+2y的最大值等于9;若直線y=a(x+1)與區(qū)域D有公共點,則a的取值范圍是[0,$\frac{3}{4}$].

查看答案和解析>>

同步練習(xí)冊答案