相關(guān)習(xí)題
 0  232987  232995  233001  233005  233011  233013  233017  233023  233025  233031  233037  233041  233043  233047  233053  233055  233061  233065  233067  233071  233073  233077  233079  233081  233082  233083  233085  233086  233087  233089  233091  233095  233097  233101  233103  233107  233113  233115  233121  233125  233127  233131  233137  233143  233145  233151  233155  233157  233163  233167  233173  233181  266669 

科目: 來源: 題型:選擇題

11.已知集合A={x∈R|x2+y2=4},B={y∈R|y=$\sqrt{x-1}}$},則A∩B=(  )
A.$\{(x,y)\left|{{x^2}+{y^2}=4}\right.,y=\sqrt{x-1}\}$B.[0,2]
C.[-2,2]D.[0,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和是Sn,Sn=2an-1且n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2(Sn+1)(n∈N*),令Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,求Tn

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD=2,A是PB中點(diǎn).E是BC中點(diǎn).現(xiàn)沿AD把平面PAD折起,使得PA⊥AB,連結(jié)PB.

(Ⅰ)求證:DE⊥平面PAE;
(Ⅱ)求AE與平面PDE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)g(x)的最大值與最小值,并指出取得最值時(shí)的x的值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知等腰△ABC中,AB=AC,AB所在直線方程為2x+y-4=0,BC邊上的中線AD所在直線方程為x-y+1=0,D(4,5).
(Ⅰ)求BC邊所在直線方程;
(Ⅱ)求B點(diǎn)坐標(biāo)及AC邊所在直線方程.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=g(x)恰有3個(gè)零點(diǎn),則b的取值范圍是(0,2).

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知P是等腰直角△ABC的斜邊BC上的動點(diǎn),|$\overrightarrow{AB}$|=2,則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=4.

查看答案和解析>>

科目: 來源: 題型:填空題

3.若關(guān)于x,y的不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2≤0}\\{ax-y+1≥0}\end{array}\right.$(a>0)所表示的平面區(qū)域的面積為4,則a的值為1.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知α∈($\frac{π}{2}$,π),sinα=$\frac{4}{5}$,則sin2α=$-\frac{24}{25}$.

查看答案和解析>>

同步練習(xí)冊答案