相關(guān)習(xí)題
 0  232989  232997  233003  233007  233013  233015  233019  233025  233027  233033  233039  233043  233045  233049  233055  233057  233063  233067  233069  233073  233075  233079  233081  233083  233084  233085  233087  233088  233089  233091  233093  233097  233099  233103  233105  233109  233115  233117  233123  233127  233129  233133  233139  233145  233147  233153  233157  233159  233165  233169  233175  233183  266669 

科目: 來(lái)源: 題型:填空題

11.已知α,β∈(0,$\frac{π}{2}$),滿足tan(α+β)=4tanβ,則tanα的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.p:?x∈R,使3x2-2x+c<0,q:對(duì)?x∈R,使f(x)=log2(3x2-2x+c)值域?yàn)镽,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.國(guó)內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如表2×2列聯(lián)表:
運(yùn)動(dòng)時(shí)間
性別 
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生 36
女生 26
合計(jì)100 
(1)請(qǐng)根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AD的長(zhǎng)為6.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.若在區(qū)間[0,2π]上隨機(jī)取一個(gè)數(shù)x,則sinx的值介于0到$\frac{{\sqrt{3}}}{2}$之間的概率為$\frac{1}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.cos555°的值為( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min 后,乙從A乘纜車到B,在B處停留1min后,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130m/min,山路AC長(zhǎng)為1260m,經(jīng)測(cè)量,cos A=$\frac{12}{13}$,cos C=$\frac{3}{5}$.
(Ⅰ)求索道AB的長(zhǎng);
(Ⅱ)問(wèn):乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅲ)為使兩位游客在C處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.前不久商丘市因環(huán)境污染嚴(yán)重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù).
x3456
y2.5344.5
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅱ)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.O是面α上一定點(diǎn),A,B,C是面α上△ABC的三個(gè)頂點(diǎn),∠B,∠C分別是邊AC,AB的對(duì)角.以下命題正確的是②③④⑤.(把你認(rèn)為正確的序號(hào)全部寫上)
①動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則△ABC的外心一定在滿足條件的P點(diǎn)集合中;
②動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|}}$)(λ>0),則△ABC的內(nèi)心一定在滿足條件的P點(diǎn)集合中;
③動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|sinB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|sinC}}$)(λ>0),則△ABC的重心一定在滿足條件的P點(diǎn)集合中;
④動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的垂心一定在滿足條件的P點(diǎn)集合中.
⑤動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的外心一定在滿足條件的P點(diǎn)集合中.

查看答案和解析>>

同步練習(xí)冊(cè)答案