相關(guān)習題
 0  234731  234739  234745  234749  234755  234757  234761  234767  234769  234775  234781  234785  234787  234791  234797  234799  234805  234809  234811  234815  234817  234821  234823  234825  234826  234827  234829  234830  234831  234833  234835  234839  234841  234845  234847  234851  234857  234859  234865  234869  234871  234875  234881  234887  234889  234895  234899  234901  234907  234911  234917  234925  266669 

科目: 來源: 題型:填空題

19.如圖,60°的二面角棱上有A′,B′兩點,直線AA′,BB′分別在這個二面角的半平面內(nèi),且都垂直于A′B′,已知A′B′=3,AA′=3,BB′=5,則AB的長度為2$\sqrt{7}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點.
(1)求證:AC1∥平面B1CD;
(2)求二面角B-B1C-D的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

17.如圖,在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E是線段AB上的點,且EB=1,則二面角C-DE-C1的正切值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosωx,1),$\overrightarrow$=(sinωx,cos2ωx-$\frac{1}{2}$)(ω>0),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,若函數(shù)f(x)的圖象的一條對稱軸與它相鄰的一個對稱中心的距離為$\frac{π}{4}$.
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個單位,再將各點的橫坐標縮短到原來的$\frac{1}{2}$(縱坐標不變),得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間$[0,\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知點P(1,1),圓C:x2+y2-4y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)是否存在點M滿足OP⊥OM,若存在請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.同時拋擲兩顆骰子,計算:
(1)事件“向上點數(shù)不相同”的概率;
(2)事件“向上點數(shù)之和為5”的概率;
(3)事件“向上點數(shù)之和大于10”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(1)若$\frac{π}{2}<α<π$,sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$為平面向量,且$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow$=(x,y),|$\overrightarrow$|=4.
(1)若$\overrightarrow{a}$,$\overrightarrow$的夾角為150°,求|2$\overrightarrow{a}+\overrightarrow$|及|$\overrightarrow{a}-2\overrightarrow$|;
(2)若$\overrightarrow$是與$\overrightarrow{a}$平行的向量,求$\overrightarrow$的坐標.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知a,b,c為圓O上的三點,若$\overrightarrow{OA}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,則|$\overrightarrow{AO}$|=$\frac{5}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

10.在區(qū)間(0,1)隨機地取出一個數(shù),則這個數(shù)小于$\frac{1}{3}$的概率是$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案