相關(guān)習(xí)題
 0  234841  234849  234855  234859  234865  234867  234871  234877  234879  234885  234891  234895  234897  234901  234907  234909  234915  234919  234921  234925  234927  234931  234933  234935  234936  234937  234939  234940  234941  234943  234945  234949  234951  234955  234957  234961  234967  234969  234975  234979  234981  234985  234991  234997  234999  235005  235009  235011  235017  235021  235027  235035  266669 

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=x(ax+b)-lnx(a≥0,b∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)若b=a-2,且不存在x0∈(0,+∞),使得f(x0)≤0成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知y=f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),將y=f(x)和y=f′(x)的圖象畫在同一個(gè)直角坐標(biāo)系中,不可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$.
(1)當(dāng)$0<a<\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2bx+4.當(dāng)$a=\frac{1}{4}$時(shí),若對(duì)任意$x∈[\frac{1}{e},e]$,存在x2∈[1,2],使f(x1)=g(x2),求實(shí)數(shù)b取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知直線l與圓C:x2+y2+2x-4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1).
(1)求實(shí)數(shù)a的取值范圍以及直線l的方程;
(2)若以$\overrightarrow{AB}$為直徑的圓過原點(diǎn)O,求圓C的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且$PD=CD=\frac{{\sqrt{2}}}{2}BC$,過棱PC的中點(diǎn)AB1⊥PQ,作EF⊥PB交PB于點(diǎn)PQD,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.
(2)求異面直線與BE所成角的余弦值及二面角B-DE-F的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知數(shù)列{an}滿足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,則a2015=( 。
A.$\frac{{3}^{2015}}{2}$+$\frac{3}{2}$B.$\frac{{3}^{2015}}{8}$C.$\frac{{3}^{2015}}{8}$+$\frac{3}{2}$D.$\frac{{3}^{2015}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時(shí),稱b能整除a,記作b|a,已知A={1,2,3,4,5,…,23},若M⊆A,且存在a,b∈M,b<a,b|a,則稱M為集合A的“和諧集”.
(1)存在q∈A,使得2011=91q+r (0≤r<91),試求q,r的值;
(2)已知集合B={5,7,8,9,11,12,t}滿足B⊆A,但B不為“和諧集”,試寫出所有滿足條件的t值;
(3)已知集合C為集合A的有12個(gè)元素的子集,又m∈A,當(dāng)m∈C時(shí),無論C中其它元素取何值,C都為集合A的“和諧集”,試求滿足條件的m的最大值,并簡要說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知f(x)=$\frac{{{e^{ax}}}}{x}$,(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若f(x)在(0,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)在[m,m+2](m>0)上的最小值;
(Ⅲ)求證:$\sum_{i=1}^n{\frac{1}{{i•{e^i}}}}<\frac{7}{4e}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直線AM與直線PC所成的角為45°,又AC=1,BC=2PM=2,∠ACB=90°.
(1)求證:AC⊥BM;
(Ⅱ)求二面角M-AB-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)如果橢圓M的離心率e=$\frac{\sqrt{3}}{2}$,經(jīng)過點(diǎn)P(2,1).
①求橢圓M的方程;
②經(jīng)過點(diǎn)P的兩直線與橢圓M分別相交于A,B,它們的斜率分別為k1,k2.如果k1+k2=0,試問:直線AB的斜率是否為定值?并證明.
(2)如果橢圓M的a=2,b=1,點(diǎn)B,C分別為橢圓M的上、下頂點(diǎn),過點(diǎn)T(t,2)(t≠0)的直線TB,TC分別與橢圓M交于E,F(xiàn)兩點(diǎn).若△TBC的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案