相關(guān)習(xí)題
 0  236396  236404  236410  236414  236420  236422  236426  236432  236434  236440  236446  236450  236452  236456  236462  236464  236470  236474  236476  236480  236482  236486  236488  236490  236491  236492  236494  236495  236496  236498  236500  236504  236506  236510  236512  236516  236522  236524  236530  236534  236536  236540  236546  236552  236554  236560  236564  236566  236572  236576  236582  236590  266669 

科目: 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+(b-2)x+3,且-1,3是函數(shù)f(x)的零點.
(Ⅰ)求f(x)解析式,并解不等式f(x)≤3;
(Ⅱ)若g(x)=f(sinx),求函數(shù)g(x)的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.cos60°的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,正方形ABCD所在平面與四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°.
(1)求證:EF⊥平面BCE;
(2)設(shè)線段CD、AE的中點分別為P、M,求PM與BC所成角的正弦值;
(3)求二面角F-BD-A的平面角的正切值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,M,N分別是AB,BC的中點. 
(1)求證:平面B1MN⊥平面BB1D1D;
(2)在棱DD1上是否存在一點P,使得BD1∥平面PMN,若存在,求D1P:PD的比值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖所示,從左到右依次為:一個長方體截去一個角所得多面體的直觀圖,該多面體的正視圖,該多面體的側(cè)視圖(單位:cm)
(1)按照給出的尺寸,求該多面體的體積;
(2)在所給直觀圖中連結(jié)BC′,證明:BC′∥平面EFG.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知直線l1:3x+2y-1=0,直線l2:5x+2y+1=0,直線l3:3x-5y+6=0,直線L經(jīng)過直線l1與直線l2的交點,且垂直于直線l3,求直線L的一般式方程.

查看答案和解析>>

科目: 來源: 題型:解答題

6.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長為1的正方形,點S,A,B,C,D均在半徑為1的同一球面上,則底面ABCD的中心與頂點S之間的距離為$\frac{{\sqrt{10}}}{2}$..

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知直線l1:2x+(m+1)y+4=0,直線l2:mx+3y+4=0,若l1∥l2,則實數(shù)m=-3.

查看答案和解析>>

科目: 來源: 題型:解答題

4.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)F(x)=3[f(x-$\frac{π}{12}$)]2+mf(x-$\frac{π}{12}$)+2在區(qū)間[0,$\frac{π}{2}$]上有四個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知單位圓O與x軸正半軸相交于點M,點A,B在單位圓上,其中點A在第一象限,且∠AOB=$\frac{π}{2}$,記∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求點A,B的坐標(biāo);
(Ⅱ)若點A的坐標(biāo)為($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

同步練習(xí)冊答案