相關(guān)習(xí)題
 0  236931  236939  236945  236949  236955  236957  236961  236967  236969  236975  236981  236985  236987  236991  236997  236999  237005  237009  237011  237015  237017  237021  237023  237025  237026  237027  237029  237030  237031  237033  237035  237039  237041  237045  237047  237051  237057  237059  237065  237069  237071  237075  237081  237087  237089  237095  237099  237101  237107  237111  237117  237125  266669 

科目: 來源: 題型:填空題

11.已知函數(shù)y=sinx(x∈[m,n]),值域?yàn)?[-\frac{1}{2},1]$,則n-m的最大值為$\frac{4π}{3}$,最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若存在實(shí)數(shù)α∈R,$β∈[\frac{π}{2},π]$,使得實(shí)數(shù)t同時(shí)滿足$t={cos^2}β+\frac{α}{2}cosβ$,α≤t≤α-2cosβ,則t的取值范圍是( 。
A.$[-\frac{2}{3},0]$B.$[0,\frac{4}{3}]$C.$[\frac{4}{3},2]$D.[2,4]

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2-2x在區(qū)間[-1,t]上的最大值為3,則實(shí)數(shù)t的取值范圍是( 。
A.(1,3]B.[1,3]C.[-1,3]D.(-1,3]

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)=loga(x-$\sqrt{2}$+1)+2$\sqrt{2}$(a>0,a≠1)的圖象經(jīng)過定點(diǎn)P,且點(diǎn)P在冪函數(shù)g(x)的圖象上,則g(x)的表達(dá)式為( 。
A.g(x)=x2B.$g(x)=\frac{1}{x}$C.g(x)=x3D.$g(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.ω=2,$φ=\frac{π}{6}$B.$ω=\frac{1}{2}$,$φ=\frac{π}{6}$C.ω=2,$φ=\frac{π}{3}$D.$ω=\frac{1}{2}$,$φ=\frac{π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若x0是函數(shù)f(x)=-x3-3x+5的零點(diǎn),則x0所在的一個(gè)區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若$a={({\frac{3}{5}})^4}$,$b={({\frac{3}{5}})^3}$,$c={log_3}\frac{3}{5}$,則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=|x-1|-1(x∈{0,1,2,3}),則其值域?yàn)椋ā 。?table class="qanwser">A.{0,1,2,3}B.{-1,0,1}C.{y|-1≤y≤1}D.{y|0≤y≤2}

查看答案和解析>>

科目: 來源: 題型:選擇題

3.$sin\frac{11π}{3}$的值為(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow b$=(x,-2),若$\overrightarrow a$與$\overrightarrow b$共線,則x的值為( 。
A.-4B.4C.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案