相關(guān)習(xí)題
 0  237062  237070  237076  237080  237086  237088  237092  237098  237100  237106  237112  237116  237118  237122  237128  237130  237136  237140  237142  237146  237148  237152  237154  237156  237157  237158  237160  237161  237162  237164  237166  237170  237172  237176  237178  237182  237188  237190  237196  237200  237202  237206  237212  237218  237220  237226  237230  237232  237238  237242  237248  237256  266669 

科目: 來源: 題型:填空題

10.在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,且AB=4,AC=5,則BC的取值范圍是(3,$\sqrt{41}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

9.我國古代數(shù)學(xué)家祖暅?zhǔn)侵麛?shù)學(xué)家祖沖之之子,祖暅原理敘述道:“夫疊棋成立積,緣冪勢既同,則積不容異.”意思是:夾在兩個平行平面之間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面面積總相等,那么這兩個幾何體的體積相等.其最著名之處是解決了“牟合方蓋”中的體積問題,其核心過程為:如下圖正方體ABCD-A1B1C1D1,求圖中四分之一圓柱體BB1C1-AA1D1和四分之一圓柱體AA1B1-DD1C1公共部分的體積V,若圖中正方體的棱長為2,則V=( 。  
(在高度h處的截面:用平行于正方體上下底面的平面去截,記截得兩圓柱體公共部分所得面積為S1,截得正方體所得面積為S2,截得錐體所得面積為S3,${S_1}={R^2}-{h^2}$,${S_2}={R^2}$⇒S2-S1=S3
A.$\frac{16}{3}$B.$\frac{8}{3}$C.8D.$\frac{8π}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面$ABCD,AB=2,∠BAD=\frac{π}{3},M$為BC上一點(diǎn),且$BM=\frac{1}{2}$.
(1)證明:BC⊥平面POM;
(2)若MP⊥AP,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,點(diǎn)G為△ABC的重心,N為AB中點(diǎn),$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈R,λ>0),
(1)當(dāng)$λ=\frac{2}{3}$時,求證:GM∥平面DFN;
(2)若直線MN與CD所成角為$\frac{π}{3}$,試求二面角M-BC-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,BC∥AD,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,點(diǎn)E在棱PD上(點(diǎn)E異于端點(diǎn)),且$\overrightarrow{PE}=λ\overrightarrow{PD}$.
(1)當(dāng)$λ=\frac{2}{3}$時,求異面直線PC與AE所成角的余弦值;
(2)若二面角P-AC-E的余弦值為$\frac{\sqrt{3}}{3}$,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,$∠BC{C_1}=\frac{π}{3},AB=B{B_1}=2,BC=1,D$為CC1的中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求點(diǎn)A1到平面ADB1的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=|2x+1|+|x-3|-7.
(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,拋物線C的方程為x2=4y+4.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(2)直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù)),l與C交于A,B兩點(diǎn),|AB|=8,求l的斜率.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)F1(-1,0),C的離心率為e,b是3e和a的等比中項(xiàng).
(1)求曲線C的方程;
(2)傾斜角為α的直線過原點(diǎn)O且與C交于A,B兩點(diǎn),傾斜角為β的直線過F1且與C交于D,E兩點(diǎn),若α+β=π,求$\frac{{{{|{AB}|}^2}}}{{|{DE}|}}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=axex-(a-1)(x+1)2(其中a∈R,e為自然對數(shù)的底數(shù),e=2.718128…).
(1)當(dāng)a=-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)僅有一個極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案