相關(guān)習(xí)題
 0  237752  237760  237766  237770  237776  237778  237782  237788  237790  237796  237802  237806  237808  237812  237818  237820  237826  237830  237832  237836  237838  237842  237844  237846  237847  237848  237850  237851  237852  237854  237856  237860  237862  237866  237868  237872  237878  237880  237886  237890  237892  237896  237902  237908  237910  237916  237920  237922  237928  237932  237938  237946  266669 

科目: 來(lái)源: 題型:選擇題

20.命題“?x∈[0,+∞],x3+x≥0”的否定是( 。
A.?x∈(-∞,0),x3+x<0B.?x∈(-∞,0),x3+x≥0
C.$?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}<0$D.$?{x_0}∈[0,\;+∞),\;x_0^3+{x_0}≥0$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.已知雙曲線的右焦點(diǎn)F為圓x2+y2-4x+3=0的圓心,且其漸近線與該圓相切,則雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{3}-{y^2}$=1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.已知A,B分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在x軸正半軸,y軸正半軸上的頂點(diǎn),原點(diǎn)O到直線AB的距離為$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(-1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點(diǎn),若|MN|=$\frac{{12\sqrt{2}}}{7}$,求k的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}+1,x>3\\{4^x}-4,x≤3\end{array}$,若f(a)=f(2),且a≠2,則f(2a)=122.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1+lnx}{x}$,證明:f(x)≤1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的通項(xiàng)公式an=$\frac{1}{(n+1)^{2}}$(n∈N*),記bn=(1-a1)(1-a2)…(1-an),試通過(guò)計(jì)算b1,b2,b3的值,推測(cè)出{bn}的通項(xiàng)公式.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.函數(shù)y=log2(3x2-7x+2)的單調(diào)減區(qū)間為(  )
A.($\frac{7}{6}$,+∞)B.(-∞,$\frac{7}{6}$)C.(-∞,$\frac{1}{3}$)D.(2,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.已知點(diǎn)F(-2,0),G是圓${C_1}:{(x+4)^2}+{y^2}=16$上任意一點(diǎn).
(1)若直線FG與直線x=-4交于點(diǎn)T,且G為線段FT的中點(diǎn),求圓C被直線FG所截得的弦長(zhǎng);
(2)在平面上是否存在定點(diǎn)P,使得|GP|=2|GF|?若存在.,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間及最值;
(3)當(dāng)關(guān)于x的方程f(x)=m有四個(gè)不同的解時(shí),求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.設(shè)x,y∈R,則“x≥2且y≥2”是“x+y≥4”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案