相關習題
 0  238067  238075  238081  238085  238091  238093  238097  238103  238105  238111  238117  238121  238123  238127  238133  238135  238141  238145  238147  238151  238153  238157  238159  238161  238162  238163  238165  238166  238167  238169  238171  238175  238177  238181  238183  238187  238193  238195  238201  238205  238207  238211  238217  238223  238225  238231  238235  238237  238243  238247  238253  238261  266669 

科目: 來源: 題型:填空題

4.已知函數(shù)f(x)=ex+ln(x+1)的圖象在(0,f(0))處的切線與直線x-ny+4=0垂直,則n的值為-2.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式與單調遞減區(qū)間;
(2)函數(shù)f(x)的圖象上所有點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{2}$個單位長度,得到g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.實軸長為4$\sqrt{5}$,且焦點為(±5,0)的雙曲線的標準方式為(  )
A.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

1.雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1的離心率是( 。
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{\sqrt{41}}{5}$D.$\frac{5}{\sqrt{41}}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.下列說法正確的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件
B.命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0”
C.已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題
D.從勻速傳遞的生產(chǎn)流水線上,質檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分層抽樣

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)$f(x)=sin2x+2{sin^2}\frac{1}{2}x$,則$f(\frac{π}{2017})+f(\frac{2π}{2017})+f(\frac{3π}{2017})+…+f(\frac{2016π}{2017})$=2016.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知sinα+cosα=$\frac{1}{5}$   且 0<α<π求:
(1)sinαcosα;
(2)tanα.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}+lnx+bx$,其中a,b∈R.
(1)當b=1時,g(x)=f(x)-x在$x=\frac{{\sqrt{2}}}{2}$處取得極值,求函數(shù)f(x)的單調區(qū)間;
(2)若a=0時,函數(shù)f(x)有兩個不同的零點x1,x2
①求b的取值范圍;
②求證:$\frac{{{x_1}{x_2}}}{e^2}>1$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個頂點的坐標為(0,-1),且右焦點F到直線x-y+1=0的距離為$\sqrt{2}$.
(1)求橢圓C的標準方程;
(2)是否存在斜率為2的直線l,使得當直線l與橢圓C有兩個不同交點M,N時,能在直線$y=\frac{5}{3}$上找到一點P,在橢圓C上找到一點Q,滿足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=x2+mx+n,其中1≤m≤3,0≤n≤4,記函數(shù)f(x)滿足條件$\left\{\begin{array}{l}f(2)≤12\\ f(-1)≤3\end{array}\right.$的事件為A,則事件A發(fā)生的概率為(  )
A.$\frac{5}{8}$B.$\frac{13}{16}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案