相關(guān)習(xí)題
 0  238555  238563  238569  238573  238579  238581  238585  238591  238593  238599  238605  238609  238611  238615  238621  238623  238629  238633  238635  238639  238641  238645  238647  238649  238650  238651  238653  238654  238655  238657  238659  238663  238665  238669  238671  238675  238681  238683  238689  238693  238695  238699  238705  238711  238713  238719  238723  238725  238731  238735  238741  238749  266669 

科目: 來源: 題型:解答題

8.已知A,B,C是△ABC的三個(gè)內(nèi)角,A,B,C所對(duì)的邊分別為a,b,c,設(shè)平面向量$\overrightarrow{m}$=(cosB,sinB),$\overrightarrow{n}$=(cosC,-sinC),$\overrightarrow{m}$與$\overrightarrow{n}$所成的夾角為120°.
(1)求A的值.
(2)若△ABC的面積S=$\frac{8\sqrt{3}}{3}$,sinC=2sinB,求a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.一圓錐的側(cè)面展開圖恰好是一個(gè)半徑為4的半圓,則圓錐的高等于2$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+acost\\ y=asint\end{array}$(t為參數(shù),a>0),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ.
(1)求曲線C1的普通方程,并將C1的方程化為極坐標(biāo)方程;
(2)直線C3的極坐標(biāo)方程為θ=$\frac{π}{4}$,若曲線C1與C2的公共點(diǎn)都在C3上,求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.如圖,三棱柱ABE-DCF中,△EAB是正三角形,四邊形ABCD是矩形,且EA=2,BC=2$\sqrt{3}$,EC=4.
(1)求證:平面EAB⊥平面ABCD;
(2)若點(diǎn)P在線段EA上,且PA=λEA(0<λ<1),當(dāng)三棱錐B-APD的體積為$\frac{3}{2}$時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知數(shù)列{an},Sn是其前n項(xiàng)和,且滿足2an=Sn+n(n∈N*).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)設(shè)bn=log2(an+1),且Mn為數(shù)列{bn}的前n項(xiàng)和,求數(shù)列$\left\{{\frac{1}{M_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=x2-2ex-$\frac{lnx}{x}$+a(其中e為自然對(duì)數(shù)的底數(shù),若函數(shù)f(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$({0,{e^2}-\frac{1}{e}}]$B.$({0,{e^2}+\frac{1}{e}}]$C.$[{{e^2}-\frac{1}{e},+∞})$D.$({-∞,{e^2}+\frac{1}{e}}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知變量x,y滿足$\left\{\begin{array}{l}x-3y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$則$\frac{x}{y}$的最大值是( 。
A.$\frac{9}{7}$B.3C.$\frac{3}{4}$D.$\frac{7}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.函數(shù)$f(x)={({\frac{1}{2}})^{|x|}}-{x^2}$+2的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{{\sqrt{3}}}{3}$x,若頂點(diǎn)到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{{3{y^2}}}{4}$=1B.$\frac{x^2}{12}-\frac{y^2}{4}$=1C.$\frac{x^2}{4}-\frac{y^2}{12}$=1D.$\frac{{3{x^2}}}{4}-\frac{y^2}{4}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知(3-4i)$\overline{z}$=i101(其中$\overline z$為z的共軛復(fù)數(shù),i為虛數(shù)單位),則復(fù)數(shù)z的虛部為(  )
A.$\frac{3i}{25}$B.-$\frac{3}{25}$C.$\frac{3}{25}$D.-$\frac{4}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案