相關習題
 0  238696  238704  238710  238714  238720  238722  238726  238732  238734  238740  238746  238750  238752  238756  238762  238764  238770  238774  238776  238780  238782  238786  238788  238790  238791  238792  238794  238795  238796  238798  238800  238804  238806  238810  238812  238816  238822  238824  238830  238834  238836  238840  238846  238852  238854  238860  238864  238866  238872  238876  238882  238890  266669 

科目: 來源: 題型:選擇題

15.函數(shù)y=loga(2x-3)+$\frac{\sqrt{2}}{2}$的圖象恒過定點P,P在冪函數(shù)f(x)的圖象上,則f(9)=( 。
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目: 來源: 題型:填空題

14.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+2)的切線,則b=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在國乒“直通莫斯科”比賽中共有女運動員5人,從這10名運動員中選出6人進行男女混合雙打比賽,由于排名世界第一,男隊的馬龍,女隊的丁寧自動入選,組隊方案有(  )
A.${(A_5^2)^2}$B.${(C_4^2)^2}A_2^2$C.${(C_5^2)^2}A_3^3$D.${(C_4^2)^2}A_3^3$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{{\sqrt{x}}}+f(x)({x>0,m∈R})$.
(1)設a=3xf(x)-7(x-1),b=-2lnx+6x-6,求證:對任意正數(shù)x,在a與b中至少有一個不大于0;
(2)討論函數(shù)g(x)在區(qū)間$[{\frac{1}{4},{e^4}}]$上零點的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,將直角△ABC沿著平行BC邊的直線DE折起,使得平面A′DE⊥平面BCDE,其中D、E分別在AC、AB邊上,且AC⊥BC,BC=3,AB=5,點A′為點A折后對應的點,當四棱錐A′-BCDE的體積取得最大值時,求AD的長.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=2x3-ax2+6(a∈R).
(1)討論f(x)的單調(diào)性;
(2)當a=9時,求方程$f(x)=\sqrt{2}$的解的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+x.
(1)求定積分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲線y=f(x)的一條切線經(jīng)過點(0,-2),求此切線的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=xex+5.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[0,1]上的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

7.定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+1>0,f(1)=5,則不等式$f(x)<\frac{1}{x}+4$的解集為(0,1).

查看答案和解析>>

科目: 來源: 題型:填空題

6.若$\int_0^{\frac{π}{4}}{cosxdx=\int_0^a{{x^2}dx}}$,則a3=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案