相關習題
 0  239112  239120  239126  239130  239136  239138  239142  239148  239150  239156  239162  239166  239168  239172  239178  239180  239186  239190  239192  239196  239198  239202  239204  239206  239207  239208  239210  239211  239212  239214  239216  239220  239222  239226  239228  239232  239238  239240  239246  239250  239252  239256  239262  239268  239270  239276  239280  239282  239288  239292  239298  239306  266669 

科目: 來源: 題型:選擇題

4.設集合A={0,1},B={x|(x+2)(x-1)<0,x∈Z},則A∪B=( 。
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{0}

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),直線l:y=2x-2,若直線l平行于雙曲線C的一條漸近線且經(jīng)過C的一個頂點,則雙曲線C的焦點到漸近線的距離為( 。
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,圓C:x2+y2=6-a2在第一象限有公共點P,設圓C在點P處的切線斜率為k1,橢圓M在點P處的切線斜率為k2,則$\frac{{k}_{1}}{{k}_{2}}$的取值范圍為( 。
A.(1,6)B.(1,5)C.(3,6)D.(3,5)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.二項式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中,$\sqrt{x}$項的系數(shù)是(  )
A.$\frac{15}{2}$B.-$\frac{15}{2}$C.15D.-15

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在四面體ABCD中,若AB=CD=$\sqrt{3}$,AC=BD=2,AD=BC=$\sqrt{5}$,則直線AB與CD所成角的余弦值為(  )
A.-$\frac{1}{3}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.在平面直角坐標系xOy中,圓C:(x+2)2+(y-m)2=3,若圓C存在以G為中點的弦AB,且AB=2GO,則實數(shù)m的取值范圍是∅.

查看答案和解析>>

科目: 來源: 題型:填空題

18.Sn等差數(shù)列{an}的前n項和,a1>0,當且僅當n=10時Sn最大,則$\frac{{S}_{12}}{{a}_{12}}$的取值范圍為(-54,-21).

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,(其中e是自然對數(shù)的底數(shù)).
(1)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$]使得不等式f(x1)+g(x2)≥m成立,試求實數(shù)m的取值范圍;
(2)若x>-1,求證:f(x)-g(x)>0.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$
(1)求函數(shù)f(x)在[0,π]上的單調遞增區(qū)間;
(2)△ABC的角A,B,C的對邊長分別為a,b,c,且a2,b2,c2成等差數(shù)列,求f(B)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為對角線B1D上的一點,M,N為對角線AC上的兩個動點,且線段MN的長度為1.
(1)當N為對角線AC的中點且DE=$\sqrt{2}$時,則三棱錐E-DMN的體積是$\frac{\sqrt{3}}{9}$;
(2)當三棱錐E-DMN的體積為$\frac{1}{3}$時,則DE=$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案