相關(guān)習(xí)題
 0  239255  239263  239269  239273  239279  239281  239285  239291  239293  239299  239305  239309  239311  239315  239321  239323  239329  239333  239335  239339  239341  239345  239347  239349  239350  239351  239353  239354  239355  239357  239359  239363  239365  239369  239371  239375  239381  239383  239389  239393  239395  239399  239405  239411  239413  239419  239423  239425  239431  239435  239441  239449  266669 

科目: 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=-2,an+1=2an+4.
( I)求證{an+4}是等比數(shù)列,并求數(shù)列{an}的通項公式;
( II)求數(shù)列{an}的前n項的和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

7.若同時擲兩顆均勻的骰子,則所得點數(shù)之和大于4的概率等于$\frac{5}{6}$.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)k等于$-\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),則(m-1)(n-1)的取值范圍為( 。
A.(0,2)B.(0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目: 來源: 題型:選擇題

4.《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個圈.頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三.一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第一節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺) 問:此民謠提出的問題的答案是( 。
A.72.705尺B.61.395尺C.61.905尺D.73.995尺

查看答案和解析>>

科目: 來源: 題型:選擇題

3.把函數(shù)f(x)=$\sqrt{3}$cos2x-sin2x的圖象向右平移$\frac{π}{12}$個單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在下列哪個區(qū)間是單調(diào)遞減的(  )
A.[-$\frac{π}{2}$,0]B.[-π,0]C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[0,$\frac{π}{2}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{3}{4}$x,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx-mx的圖象與直線y=-1相切.
(Ⅰ)求m的值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=ax3,設(shè)h(x)=f(x)-g(x),討論函數(shù)h(x)的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,過左焦點F且垂直于x軸的直線與橢圓C相交,所得弦長為1,斜率為k(k≠0)的直線l過點(1,0),且與橢圓C相交于不同的兩點A,B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點M,使得無論k取何值,$\overrightarrow{MA}•\overrightarrow{MB}-\frac{k^2}{{1+4{k^2}}}$為定值?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知P(x,y)為不等式組$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面區(qū)域M內(nèi)任意一點,若目標(biāo)函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=-2.

查看答案和解析>>

同步練習(xí)冊答案