相關習題
 0  239880  239888  239894  239898  239904  239906  239910  239916  239918  239924  239930  239934  239936  239940  239946  239948  239954  239958  239960  239964  239966  239970  239972  239974  239975  239976  239978  239979  239980  239982  239984  239988  239990  239994  239996  240000  240006  240008  240014  240018  240020  240024  240030  240036  240038  240044  240048  240050  240056  240060  240066  240074  266669 

科目: 來源: 題型:選擇題

7.設i為虛數(shù)單位,則復數(shù)(-2i-1)•i的共軛復數(shù)為( 。
A.-2-iB.2-iC.-2+iD.2+i

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設集合A={-2,-1,1,2},B={-3,-1,0,2},則A∩B的元素的個數(shù)為(  )
A.2B.3C.4D.1

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知在平面直角坐標系xOy中,過點P(1,0)的直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C點的極坐標方程為ρ=-4sin(θ-$\frac{π}{6}$).
(1)判斷直線l與曲線C的位置關系;
(2)若直線l與曲線C交于兩點A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點($\sqrt{2}$,1),且焦距為2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)與橢圓C相交于不同的兩點A、B,定點P的坐標為($\frac{1}{4}$,0),證明:$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\frac{4}{2{k}^{2}+1}$是常數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

3.某工廠為了解用電量y與氣溫x℃之間的關系,隨機統(tǒng)計了5天的用電量與當天平均氣溫,得到如下統(tǒng)計表:
 日期 8月1日8月7日 8月14日 8月18日  8月25日
 平均氣溫(℃) 33 30 32 30 25
 用電量(萬度) 38 35 41 36 30
$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,$\widehat$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
(1)請根據(jù)表中的數(shù)據(jù),求出y關于x的線性回歸方程,據(jù)氣象預報9月3日的平均氣溫是23℃,請預測9月3日的用電量;(結果保留整數(shù))
(2)從表中任選兩天,求用電量(萬度)都超過35的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象如圖所示,則f(4)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=2x-6,則f(f(2))=(  )
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)當a=2時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[e,+∞)上的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的一點,PA=PD=4=AD=2BC,CD=2.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設|PM|=t|MC|,試確定t的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在2016年高考結束后,針對高考成績是否達到了考生自己預期水平的情況,某校在高三部分畢業(yè)生內部進行了抽樣調查,現(xiàn)從高三年級A、B、C、D、E、F六個班隨機抽取了50人,將統(tǒng)計結果制成了如下的表格:
班級
抽取人數(shù)10 12 12 
其中達到預期水平的人數(shù) 3 6 6
(Ⅰ)根據(jù)上述的表格,估計該校高三學生2016年的高考成績達到自己的預期水平的概率;
(Ⅱ)若從E班、F班的抽取對象中,進一步各班隨機選取2名同學進行詳細調查,記選取的4人中,高考成績沒有達到預期水平的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案