相關(guān)習(xí)題
 0  252248  252256  252262  252266  252272  252274  252278  252284  252286  252292  252298  252302  252304  252308  252314  252316  252322  252326  252328  252332  252334  252338  252340  252342  252343  252344  252346  252347  252348  252350  252352  252356  252358  252362  252364  252368  252374  252376  252382  252386  252388  252392  252398  252404  252406  252412  252416  252418  252424  252428  252434  252442  266669 

科目: 來源: 題型:選擇題

18.下列命題中:
①命題“若x2-5x+6=0,則x=2或x=3”的逆否命題為“若x≠2或x≠3,則x2-5x+6≠0”.
②命題p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”;
③回歸直線方程一定過樣本中心點($\overline{x}$,$\overline{y}$).
其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知點A(-7,1),B(-5,5),直線l:y=2x-5,P為l上的一點,使|PA|+|PB|最小時P的坐標為( 。
A.(2,-1)B.(3,-2)C.(1,-3)D.(4,-3)

查看答案和解析>>

科目: 來源: 題型:解答題

16.自點A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切,求光線l和反射光線所在的直線方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若方程x2+y2-2x-4y+m=0表示圓,則m的取值范圍是( 。
A.m≥5B.m≤5C.m>5D.m<5

查看答案和解析>>

科目: 來源: 題型:解答題

14.在平面直角坐標系xOy中,將曲線$\left\{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))上的每一點縱坐標不變,橫坐標變?yōu)樵瓉淼囊话耄缓笳麄圖象向右平移1個單位,最后橫坐標不變,縱坐標變?yōu)樵瓉淼?倍得到曲線C1,以射線Ox為極軸建立極坐標系,曲線C2的極坐標方程是ρ=4sinθ.
(1)分別寫出曲線C1,C2的普通方程;
(2)求C1和C2的公共弦的長度.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x,則將f(x)向右平移$\frac{π}{3}$個單位所得曲線的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

查看答案和解析>>

科目: 來源: 題型:選擇題

12.紅、藍兩色車、馬、炮棋子各一枚,將這6枚棋子排成一列,記事件:每對同字的棋子中,均為紅棋子在前,藍棋子在后為事件A,則事件A發(fā)生的概率為( 。
A.$\frac{1}{20}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)全集U={1,2,3,4},M={1,3,4},N={2,4},P={2},那么下列關(guān)系正確的是( 。
A.P=(∁UM)∩NB.P=M∪NC.P=M∩(∁UN)D.P=M∩N

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在給出的直角坐標系中,畫出函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有兩個極值點x1,x2,且x1<x2
(1)求實數(shù)a的取值范圍;
(2)證明:當(dāng)-$\frac{1}{2}$<x<0 時,f(x)>$\frac{11}{12}$.

查看答案和解析>>

同步練習(xí)冊答案