相關(guān)習(xí)題
 0  256755  256763  256769  256773  256779  256781  256785  256791  256793  256799  256805  256809  256811  256815  256821  256823  256829  256833  256835  256839  256841  256845  256847  256849  256850  256851  256853  256854  256855  256857  256859  256863  256865  256869  256871  256875  256881  256883  256889  256893  256895  256899  256905  256911  256913  256919  256923  256925  256931  256935  256941  256949  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點(diǎn),AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長(zhǎng);

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x (℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在

之外的零件數(shù),求

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得, ,其中為抽取的第個(gè)零件的尺寸,

用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)(精確到0.01).

附:若隨機(jī)變量服從正態(tài)分布,則

,

查看答案和解析>>

科目: 來源: 題型:

【題目】2016年入冬以來,各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車更是出臺(tái)了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車流量與的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫出散點(diǎn)圖;

(2)試判斷是否具有線性關(guān)系,若有請(qǐng)求出關(guān)于的線性回歸方程,若沒有,請(qǐng)說明理由;

(3)若周六同一時(shí)間段的車流量為60萬輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).

參考公式: , .

查看答案和解析>>

科目: 來源: 題型:

【題目】某市需對(duì)某環(huán)城快速車道進(jìn)行限速,為了調(diào)研該道路車速情況,于某個(gè)時(shí)段隨機(jī)對(duì)輛車的速度進(jìn)行取樣,測(cè)量的車速制成如下條形圖:

經(jīng)計(jì)算:樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.已知車速過慢與過快都被認(rèn)為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.

(1)從該快速車道上所有車輛中任取個(gè),求該車輛是需矯正速度的概率;

(2)從樣本中任取個(gè)車輛,求這個(gè)車輛均是需矯正速度的概率;

(3)從該快速車道上所有車輛中任取個(gè),記其中是需矯正速度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且點(diǎn)到直線的距離為, 的公共弦長(zhǎng)為.

(1)求橢圓的方程及點(diǎn)的坐標(biāo);

(2)過點(diǎn)的直線交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點(diǎn).

(1)求的長(zhǎng);

(2)在以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求的普通方程和的傾斜角;

(2)設(shè)點(diǎn) 交于兩點(diǎn),求.

查看答案和解析>>

科目: 來源: 題型:

【題目】某電子公司開發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷售價(jià)是20元,月平均銷售件,通過改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明,如果每個(gè)配件的銷售價(jià)提高的百分率為,那么月平均銷售量減少的百分率為,記改進(jìn)工藝后電子公司銷售該配件的月平均利潤(rùn)是(元).

(1)寫出的函數(shù)關(guān)系式;

(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷售該配件的月平均利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案