科目: 來(lái)源: 題型:
【題目】共享單車(chē)是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài),一個(gè)共享單車(chē)企業(yè)在某個(gè)城市就“一天中一輛單車(chē)的平均成本(單位:元)與租用單車(chē)的數(shù)量(單位:車(chē)輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:
租用單車(chē)數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車(chē)平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注: , 稱(chēng)為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));
租用單車(chē)數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車(chē)平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | 0.1 | ||||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)這個(gè)公司在該城市投放共享單車(chē)后,受到廣大市民的熱烈歡迎,共享單車(chē)常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.4,0.6,問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車(chē)的平均成本,利潤(rùn)=收入—成本).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)預(yù)測(cè), 產(chǎn)品的利潤(rùn)與投資額成正比(如圖1),產(chǎn)品的利潤(rùn)與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤(rùn)與投資額的單位均為萬(wàn)元)
(1)分別將兩種產(chǎn)品的利潤(rùn)、表示為投資額的函數(shù);
(2)該團(tuán)隊(duì)已籌集到10 萬(wàn)元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問(wèn):當(dāng)產(chǎn)品的投資額為多少萬(wàn)元時(shí),生產(chǎn)兩種產(chǎn)品能獲得最大利潤(rùn),最大利潤(rùn)為多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),1和x0是函數(shù)f(x)的兩個(gè)不同零點(diǎn),且x0∈(n,n+1),n∈N,求n.
(2)若對(duì)任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對(duì)數(shù)的底數(shù)),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某公司的兩個(gè)部門(mén)招聘工作人員,應(yīng)聘者從 T1、T2兩組試題中選擇一組參加測(cè)試,成績(jī)合格者可簽約.甲、乙、丙、丁四人參加應(yīng)聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績(jī)合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績(jī)都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com