相關(guān)習(xí)題
 0  258482  258490  258496  258500  258506  258508  258512  258518  258520  258526  258532  258536  258538  258542  258548  258550  258556  258560  258562  258566  258568  258572  258574  258576  258577  258578  258580  258581  258582  258584  258586  258590  258592  258596  258598  258602  258608  258610  258616  258620  258622  258626  258632  258638  258640  258646  258650  258652  258658  258662  258668  258676  266669 

科目: 來源: 題型:

【題目】已知復(fù)數(shù)z=3+bi(b∈R),且(1+3i)z為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若 ,求復(fù)數(shù)w的模|w|.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,定義兩點P(x1 , y1),Q(x2 , y2)之間的“直角距離”為d(P,Q)=|x1﹣x2|+|y1﹣y2|.現(xiàn)有下列命題:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點O到直線x﹣y+1=0上任一點P的直角距離d(O,P)的最小值為 ;
③若|PQ|表示P、Q兩點間的距離,那么|PQ|≥ d(P,Q);
④設(shè)A(x,y)且x∈Z,y∈Z,若點A是在過P(1,3)與Q(5,7)的直線上,且點A到點P與Q的“直角距離”之和等于8,那么滿足條件的點A只有5個.
其中的真命題是 . (寫出所有真命題的序號)

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)= 在區(qū)間(﹣2,+∞)上是遞增的,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當(dāng)AE為何值時,綠地面積y最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】以下四圖,都是同一坐標(biāo)系中三次函數(shù)及其導(dǎo)函數(shù)的圖象,其中一定正確的序號是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,常數(shù)a>0.
(1)設(shè)mn>0,證明:函數(shù)f(x)在[m,n]上單調(diào)遞增;
(2)設(shè)0<m<n且f(x)的定義域和值域都是[m,n],求常數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】(已知冪函數(shù)f(x)=x ,(k∈Z)滿足f(2)<f(3).
(1)求實數(shù)k的值,并求出相應(yīng)的函數(shù)f(x)解析式;
(2)對于(1)中的函數(shù)f(x),試判斷是否存在正數(shù)q,使函數(shù)g(x)=1﹣qf(x)+(2q﹣1)x在區(qū)間[﹣1,2]上值域為 .若存在,求出此q.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)a,b是兩個實數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個大于1”的條件是 .(填序號,只有一個正確選項)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(﹣1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|

查看答案和解析>>

同步練習(xí)冊答案