科目: 來源: 題型:
【題目】已知常數(shù)a>0,函數(shù)f(x)=ln(1+ax)﹣ .
(Ⅰ)討論f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若f(x)存在兩個極值點x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了調(diào)查中小學課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學發(fā)出問卷份, 名學生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).
(1)要從這名中小學中用分層抽樣的方法抽取名中小學生進一步調(diào)查,則在(小時)時間段內(nèi)應抽出的人數(shù)是多少?
(2)若希望的中小學生每天使用互聯(lián)網(wǎng)時間不少于(小時),請估計的值,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過拋物線x2=4y的焦點F的直線l與拋物線相交于A、B兩點.
(1)設拋物線在A、B處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 + =1的交點為C,D,問是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設點P在△ABC的BC邊所在的直線上從左到右運動,設△ABP與△ACP的外接圓面積之比為λ,當點P不與B,C重合時,( )
A.λ先變小再變大
B.當M為線段BC中點時,λ最大
C.λ先變大再變小
D.λ是一個定值
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數(shù)如表所示:
中學 | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 30 | 40 | 20 | 10 |
為了解參賽學生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調(diào)查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調(diào)查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數(shù),求X的分布列.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】設F為雙曲線 ﹣ =1(a>b>0)的右焦點,過點F的直線分別交兩條漸近線于A,B兩點,OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為( )
A.
B.2
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對于任意正實數(shù)x恒有f(x)≥g(x)
B.存在實數(shù)x0 , 當x>x0時,恒有f(x)>g(x)
C.對于任意正實數(shù)x恒有f(x)≤g(x)
D.存在實數(shù)x0 , 當x>x0時,恒有f(x)<g(x)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com