科目: 來(lái)源: 題型:
【題目】如圖,已知點(diǎn) 分別是Δ 的邊 的中點(diǎn),連接 .現(xiàn)將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .
(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn) 到點(diǎn) 的距離比它到直線 的距離小 ,記動(dòng)點(diǎn) 的軌跡為 .若以 為圓心, 為半徑( )作圓,分別交 軸于 兩點(diǎn),連結(jié)并延長(zhǎng) ,分別交曲線 于 兩點(diǎn).
(1)求曲線 的方程;
(2)求證:直線 的斜率為定值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐 中,底面 為梯形, 底面 , .過(guò) 作一個(gè)平面 使得 平面 .
(1)求平面 將四棱錐 分成兩部分幾何體的體積之比;
(2)若平面 與平面 之間的距離為 ,求直線 與平面 所成角的正弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知直線 過(guò)坐標(biāo)原點(diǎn) ,圓 的方程為 .
(1)當(dāng)直線 的斜率為 時(shí),求 與圓 相交所得的弦長(zhǎng);
(2)設(shè)直線 與圓 交于兩點(diǎn) ,且 為 的中點(diǎn),求直線 的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某企業(yè)準(zhǔn)備投資 萬(wàn)元興辦一所中學(xué),對(duì)當(dāng)?shù)亟逃袌?chǎng)進(jìn)行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級(jí)為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環(huán)境等因素,全?偘嗉(jí)至少 個(gè),至多 個(gè),若每開(kāi)設(shè)一個(gè)初、高中班,可分別獲得年利潤(rùn) 萬(wàn)元、 萬(wàn)元,則第一年利潤(rùn)最大為
A. 萬(wàn)元 B. 萬(wàn)元 C. 萬(wàn)元 D. 萬(wàn)元
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】數(shù)列中,若對(duì)任意都有(為常數(shù))成立,則稱為“等差比數(shù)列”,下面對(duì)“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項(xiàng)公式為(其中,且,)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知 ,設(shè)命題 :指數(shù)函數(shù) ≠ 在 上單調(diào)遞增.命題 :函數(shù) 的定義域?yàn)? .若“ ”為假,“ ”為真,求 的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知數(shù)列,,為數(shù)列的前項(xiàng)和,向量,,
.
(1)若,求數(shù)列通項(xiàng)公式;
(2)若,.
①證明:數(shù)列為等差數(shù)列;
②設(shè)數(shù)列滿足,問(wèn)是否存在正整數(shù),,且,,使得、、成等比數(shù)列,若存在,求出、的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下列四個(gè)命題:(1)已知向量 是空間的一組基底,則向量 也是空間的一組基底;(2) 在正方體 中,若點(diǎn) 在 內(nèi),且 ,則 的值為1;(3) 圓 上到直線 的距離等于1的點(diǎn)有2個(gè);(4)方程 表示的曲線是一條直線.其中正確命題的序號(hào)是.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com