科目: 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當(dāng)時(shí),.
()求的解析式.
()若在上為增函數(shù),求的取值范圍.
()是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】半徑小于的圓經(jīng)過點(diǎn),圓心在直線上,并且與直線相交所得的弦長為.
()求圓的方程.
()已知點(diǎn),動(dòng)點(diǎn)到圓的切線長等于到的距離,求的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E: 的左焦點(diǎn)為,且過點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線與橢圓E交于兩點(diǎn),與的交點(diǎn)為,且滿足.
①若,求: 的值;
②設(shè)點(diǎn)是橢圓E的左頂點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),試探究:在線段上是否存在一個(gè)定點(diǎn),使得直線過定點(diǎn),如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且。
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程及實(shí)數(shù)的值;
(Ⅱ)直線過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),若(為坐標(biāo)原點(diǎn))的面積為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
()若,,,求方程在區(qū)間內(nèi)的解集.
()若函數(shù)滿足:圖象關(guān)于點(diǎn)對稱,在處取得最小值,試確定、和應(yīng)滿足的與之等價(jià)的條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,
(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn)、在軸的正半軸上,點(diǎn)在軸的正半軸上.若,.
()求向量,夾角的正切值.
()問點(diǎn)在什么位置時(shí),向量,夾角最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,動(dòng)點(diǎn)滿足成等差數(shù)列。
(1)求點(diǎn)的軌跡方程;
(2)對于軸上的點(diǎn),若滿足,則稱點(diǎn)為點(diǎn)對應(yīng)的“比例點(diǎn)”,問:對任意一個(gè)確定的點(diǎn),它總能對應(yīng)幾個(gè)“比例點(diǎn)”?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com