科目: 來源: 題型:
【題目】已知(,且,)是定義在區(qū)間上的奇函數(shù),
(1)求的值和實數(shù)的值;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并說明理由;
(3)若且成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高一年級某次數(shù)學(xué)競賽隨機抽取100名學(xué)生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計后得到頻率分布直方圖如圖所示:
(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調(diào)研小組,對高一年級學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當(dāng)選為正、副小組長的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}.
(1)求m的值;
(2)設(shè)關(guān)于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實數(shù)t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ.
(1)求C2與C3交點的直角坐標(biāo);
(2)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某創(chuàng)業(yè)團隊擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場預(yù)測,產(chǎn)品的利潤與投資額成正比(如圖1),產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(注:利潤與投資額的單位均為萬元)
(1)分別將兩種產(chǎn)品的利潤、表示為投資額的函數(shù);
(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問:當(dāng)產(chǎn)品的投資額為多少萬元時,生產(chǎn)兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點,∠BAC的平分線分別交BC和圓O于點E,F(xiàn).
(1)求證:BF是△ABE外接圓的切線;
(2)若AB=3,AC=2,求DB2﹣DA2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點C在橢圓M: =1(a>b>0)上,若點A(﹣a,0),B(0, ),且 = .
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點.線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點P(﹣3,0),直線l過點(0,﹣ ),求直線l的方程;
②若直線l過點(0,﹣1),且與x軸的交點為D.求D點橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為60°,且點E在平面ABC上的射影落在∠ABC的平分線上.
(1)求證:DE∥平面ABC;
(2)求二面角E﹣BC﹣A的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com