科目: 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程;曲線的極坐標(biāo)方程。
(2)當(dāng)曲線與曲線有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知命題:①函數(shù)的值域是;
②為了得到函數(shù)的圖象,只需把函數(shù)圖象上的所有點(diǎn)向右平移個(gè)單位長(zhǎng)度;
③當(dāng)或時(shí),冪函數(shù)的圖象都是一條直線;
④已知函數(shù),若互不相等,且,則的取值范圍是.
其中正確的命題個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】高三某班有60名學(xué)生(其中女生有20名),三好學(xué)生占,而且三好學(xué)生中女生占一半,現(xiàn)在從該班任選一名學(xué)生參加座談會(huì),則在已知沒有選上女生的條件下,選上的是三好學(xué)生的概率是( )
A. B. C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,直線與曲線的交點(diǎn)為, ,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某蛋糕店每天做若干個(gè)生日蛋糕,每個(gè)制作成本為50元,當(dāng)天以每個(gè)100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個(gè)價(jià)格作普通蛋糕低價(jià)售出,可以全部售完.
(1)若蛋糕店每天做20個(gè)生日蛋糕,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個(gè), )的函數(shù)關(guān)系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個(gè))整理得下表:
(。┘僭O(shè)蛋糕店在這100天內(nèi)每天制作20個(gè)生日蛋糕,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ⅱ)若蛋糕店一天制作20個(gè)生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤(rùn)不少于900元的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻
率分布直方圖;
統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)
值作為代表,據(jù)此估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com