科目: 來源: 題型:
【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設(shè)計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目: 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某學校準備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費用均為每米500元,設(shè)圍墻(包括EF)的修建總費用為y元.
(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;
(2)當x為何值時,圍墻(包括EF)的修建總費用y最小?并求出y的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設(shè)M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】2002年北京國際數(shù)學家大會會標,是以中國古代數(shù)學家趙爽的弦圖為基礎(chǔ)而設(shè)計的,弦圖用四個全等的直角三角形與一個小正方形拼成的一個大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù),且.
(1)求a的值;
(2)求證:在定義域上是減函數(shù).
(3)解關(guān)于實數(shù)的不等式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(1)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(2)①當 a=b=l 時,證明:xf(x)+2<0; ②當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com