科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+ )的圖象與x軸交點(diǎn)的橫坐標(biāo),依次構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象,則( )
A.g(x)是奇函數(shù)
B.g(x)的圖象關(guān)于直線x=﹣ 對稱
C.g(x)在[ , ]上的增函數(shù)
D.當(dāng)x∈[ , ]時,g(x)的值域是[﹣2,1]
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A.命題p:“ ”,則?p是真命題
B.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
C.“x=﹣1”是“x2+2x+3=0”的必要不充分條件
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓Γ: +y2=1(a>1)的左焦點(diǎn)為F1 , 右頂點(diǎn)為A1 , 上頂點(diǎn)為B1 , 過F1 , A1 , B1三點(diǎn)的圓P的圓心坐標(biāo)為( , ).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=kx+m(k,m為常數(shù),k≠0)與橢圓Γ交于不同的兩點(diǎn)M和N.
(i)當(dāng)直線l過E(1,0),且 +2 = 時,求直線l的方程;
(ii)當(dāng)坐標(biāo)原點(diǎn)O到直線l的距離為 時,求△MON面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= x2+ax,g(x)=ex , a∈R且a≠0,e=2.718…,e為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)h(x)=f(x)g(x)在[﹣1,1]上極值點(diǎn)的個數(shù);
(Ⅱ)令函數(shù)p(x)=f'(x)g(x),若a∈[1,3],函數(shù)p(x)在區(qū)間[b+a﹣ea , +∞]上均為增函數(shù),求證:b≥e3﹣7.
查看答案和解析>>
科目: 來源: 題型:
【題目】某科技博覽會展出的智能機(jī)器人有 A,B,C,D 四種型號,每種型號至少有 4 臺.要求每 位購買者只能購買1臺某種型號的機(jī)器人,且購買其中任意一種型號的機(jī)器人是等可能的.現(xiàn)在有 4 個人要購買機(jī)器人.
(Ⅰ)在會場展覽臺上,展出方已放好了 A,B,C,D 四種型號的機(jī)器人各一臺,現(xiàn)把他們 排成一排表演節(jié)目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設(shè)這 4 個人購買的機(jī)器人的型號種數(shù)為ξ,求ξ 的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點(diǎn),E為PD的中點(diǎn).
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前 n 項(xiàng)和為 Sn , a1=1,且 an+1=2Sn+1,n∈N .
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 c=log3a2n , bn= ,記數(shù)列{bn}的前 n 項(xiàng)和為Tn , 若對任意 n∈N , λ<Tn 恒成立,求實(shí)數(shù) λ 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
(Ⅰ)求函數(shù) f ( x) 圖象的對稱軸方程;
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 個單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的 4 倍,縱坐標(biāo)不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[ ,2π]上的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) f(x)=1+x﹣ ,g (x)=1﹣x+ ,設(shè)函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點(diǎn)均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b﹣a 的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線 C1: =1( a>0,b>0),圓 C2:x2+y2﹣2ax+ a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個不同的交點(diǎn),則雙曲線 C1 的離心率的范圍是( )
A.(1, )
B.( ,+∞)
C.(1,2)
D.(2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com