科目: 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)為了評價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注: =yi﹣ , 稱為相應(yīng)于點(diǎn)(xi , yi)的殘差(也叫隨機(jī)誤差);
租用單車數(shù)量x(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 (1) | 2.4 | 2.1 | 1.6 | ||
殘差 (1) | 0 | ﹣0.1 | 0.1 | |||
模型乙 | 估計(jì)值 (2) | 2.3 | 2 | 1.9 | ||
殘差 (2) | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2 , 并通過比較Q1 , Q2的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入﹣成本).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在底面為矩形的四棱椎P﹣ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n﹣1}的前n項(xiàng)和為Sn .
(1)求Sn;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 若a2 , a5 , am成等比數(shù)列,求Tm .
查看答案和解析>>
科目: 來源: 題型:
【題目】直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點(diǎn),C(0,2a),給出下列4個命題:
p1:△ABC的重心在定直線7x﹣3y=0上,p2:|AB| 的最大值為2 ;
p3:△ABC的重心在定直線 3x﹣7y=0上;p4:|AB| 的最大值為2 .
其中的真命題為( 。
A.p1 , p2
B.p1 , p4
C.p2 , p3
D.p3 , p4
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代名著《莊子天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完,現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是( 。
A.①i≤7?②s=s﹣ ③i=i+1
B.①i≤128?②s=s﹣ ③i=2i
C.①i≤7?②s=s﹣ ③i=i+1
D.①i≤128?②s=s﹣ ③i=2i
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)為偶函數(shù),且在(0,1)上存在極大值,則f′(x)的圖象可能為( 。
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)x≥0時,f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: < < (參考數(shù)據(jù):ln1.1≈0.095).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: 的離心率為 ,左焦點(diǎn)為F(﹣1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在y軸上,是否存在定點(diǎn)E,使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個定值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, ,平面ABCD⊥平面ABFE.
(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com