相關習題
 0  260964  260972  260978  260982  260988  260990  260994  261000  261002  261008  261014  261018  261020  261024  261030  261032  261038  261042  261044  261048  261050  261054  261056  261058  261059  261060  261062  261063  261064  261066  261068  261072  261074  261078  261080  261084  261090  261092  261098  261102  261104  261108  261114  261120  261122  261128  261132  261134  261140  261144  261150  261158  266669 

科目: 來源: 題型:

【題目】某公司研制出了一種新產品,試制了一批樣品分別在國內和國外上市銷售,并且價格根據(jù)銷售情況不斷進行調整,結果40天內全部銷完.公司對銷售及銷售利潤進行了調研,結果如圖所示,其中圖①(一條折線)、圖②(一條拋物線段)分別是國外和國內市場的日銷售量與上市時間的關系,圖③是每件樣品的銷售利潤與上市時間的關系.

(1)分別寫出國外市場的日銷售量f(t)與上市時間t的關系及國內市場的日銷售量g(t)與上市時間t的關系;

(2)國外和國內的日銷售利潤之和有沒有可能恰好等于6 300萬元?若有,請說明是上市后的第幾天;若沒有,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:這種消費品的進價為每件14元;該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;每月需各種開支2 000.

1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目: 來源: 題型:

【題目】某化工廠引進一條先進生產線生產某種化工產品,其生產的總成本(萬元)與年產量(噸)之間的函數(shù)關系式可以近似的表示為,已知此生產線年產量最大為噸.

1)求年產量為多少噸時,生產每噸產品的平均成本最低,并求最低成本;

2)若每噸產品平均出廠價為40萬元,那么當年產量為多少噸時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】為了保護環(huán)境,發(fā)展低碳經濟,某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關系可近似地表示為:yx2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.

該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在極坐標系和直角坐標系中,極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,曲線的極坐標方程為曲線的參數(shù)方程為為參數(shù).

1)求曲線的直角坐標方程和曲線的普通方程;

(2)判斷曲線與曲線的位置關系,若兩曲線相交,求出兩交點間的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)其中是自然對數(shù)的底數(shù), .

1)討論函數(shù)的單調性;

(2)當函數(shù)有兩個零點時,證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓 兩點, 的周長為16, 的周長為12.

1)求橢圓的標準方程與離心率;

(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】“雙十一”期間,某淘寶店主對其商品的上架時間分鐘和銷售量的關系作了統(tǒng)計,得到如下數(shù)據(jù):

經計算: , , .

1)該店主通過作散點圖,發(fā)現(xiàn)上架時間與銷售量線性相關,請你幫助店主求出上架時間與銷售量的線性回歸方程(保留三位小數(shù)),并預測商品上架1000分鐘時的銷售量;

(2)從這11組數(shù)據(jù)中任選2組,設的數(shù)據(jù)組數(shù)為,的分布列與數(shù)學期望.

附:線性回歸方程公式: ,

查看答案和解析>>

科目: 來源: 題型:

【題目】給出集合.

(1)若,求證:函數(shù);

(2)由(1)分析可知, 是周期函數(shù)且是奇函數(shù),于是張三同學得出兩個命

題:命題甲:集合中的元素都是周期函數(shù).命題乙:集合中的元素都是奇函數(shù). 請對此

給出判斷,如果正確,請證明;如果不正確,請舉反例;

(3)若,數(shù)列滿足: ,且 ,數(shù)列的前

和為,試問是否存在實數(shù)、,使得任意的,都有成立,若

存在,求出、的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Ax軸正半軸上的任一點,且,點B在射線ON上運動.

(1)若點,當為直角三角形時,求的值;

(2)若點,求點A關于射線的對稱點P的坐標;

(3)若,C為線段AB的中點,若Q為點C關于射線ON的對稱點,求點的軌跡方程,并指出x、y的取值范圍.

查看答案和解析>>

同步練習冊答案