科目: 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(2)射線OP:(其中)與C2交于P點(diǎn),射線OQ:與C2交于Q點(diǎn),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)求的零點(diǎn);
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)若有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,依逆時(shí)針次序排列,點(diǎn)的極坐標(biāo)為.
(1)求點(diǎn),,的直角坐標(biāo);
(2)設(shè)為上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在多面體中,底面是邊長(zhǎng)為2的菱形,,四邊形是矩形,和分別是和的中點(diǎn).
(1)求證:平面平面;
(2)若平面平面,,求平面與平面所成角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一個(gè)總體的100個(gè)個(gè)體編號(hào)為0,1,2,…,99,并依次將其分為10個(gè)組,組號(hào)為0,1,2,…,9.要用系統(tǒng)抽樣法抽取一個(gè)容量為10的樣本,如果在第0組(號(hào)碼為0—9)隨機(jī)抽取的號(hào)碼為2,則抽取的10個(gè)號(hào)碼為______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)和,
(Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),為函數(shù)圖象與函數(shù)圖象的公共點(diǎn),且在點(diǎn)處有公共切線,求點(diǎn)的坐標(biāo)及實(shí)數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】生物學(xué)家預(yù)言,21世紀(jì)將是細(xì)菌發(fā)電造福人類的時(shí)代。說起細(xì)菌發(fā)電,可以追溯到1910年,英國(guó)植物學(xué)家利用鉑作為電極放進(jìn)大腸桿菌的培養(yǎng)液里,成功地制造出世界上第一個(gè)細(xì)菌電池。然而各種細(xì)菌都需在最適生長(zhǎng)溫度的范圍內(nèi)生長(zhǎng)。當(dāng)外界溫度明顯高于最適生長(zhǎng)溫度,細(xì)菌被殺死;如果在低于細(xì)菌的最低生長(zhǎng)溫度時(shí),細(xì)菌代謝活動(dòng)受抑制。為了研究某種細(xì)菌繁殖的個(gè)數(shù)是否與在一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種細(xì)菌的6組觀測(cè)數(shù)據(jù)如下表:
經(jīng)計(jì)算得:,,線性回歸模型的殘差平方和.其中分別為觀測(cè)數(shù)據(jù)中的溫度與繁殖數(shù),.
參考數(shù)據(jù):,,
(Ⅰ)求關(guān)于的線性回歸方程(精確到0.1);
(Ⅱ)若用非線性回歸模型求得關(guān)于回歸方程為,且非線性回歸模型的殘差平方和.
(。┯孟嚓P(guān)指數(shù)說明哪種模型的擬合效果更好;
(ⅱ)用擬合效果好的模型預(yù)測(cè)溫度為34℃時(shí)該種細(xì)菌的繁殖數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)為,;
相關(guān)指數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐與三棱錐中,和都是邊長(zhǎng)為2的等邊三角形,分別為的中點(diǎn),,.
(Ⅰ)試在平面內(nèi)作一條直線,當(dāng)時(shí),均有平面(作出直線并證明);
(Ⅱ)求兩棱錐體積之和的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com