科目: 來源: 題型:
【題目】(本小題滿分10分)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動點,P點滿足,點P的軌跡為曲線.
(I)求的方程;
(II)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目: 來源: 題型:
【題目】某工科院校對A、B兩個專業(yè)的男、女生人數(shù)進行調(diào)查統(tǒng)計,得到以下表格:
專業(yè)A | 專業(yè)B | 合計 | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計 | 50 | 100 |
如果認為工科院校中“性別”與“專業(yè)”有關(guān),那么犯錯誤的概率不會超過( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的最大值與最小值之和為a2+a+1(a>1).
(1)求a的值;
(2)判斷函數(shù)g(x)=f(x)-3在[1,2]的零點的個數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學(xué)生從全校學(xué)生中隨機選取名統(tǒng)計他們的鞋碼大小,得到如下數(shù)據(jù):
鞋碼 | 合計 | ||||||||||
男生 | |||||||||||
女生 |
以各性別各鞋碼出現(xiàn)的頻率為概率.
()從該校隨機挑選一名學(xué)生,求他(她)的鞋碼為奇數(shù)的概率.
()為了解該校學(xué)生考試作弊的情況,從該校隨機挑選名學(xué)生進行抽樣調(diào)查.每位學(xué)生從裝有除顏色外無差別的個紅球和個白球的口袋中,隨機摸出兩個球,若同色,則如實回答其鞋碼是否為奇數(shù);若不同色,則如實回答是否曾在考試中作弊.這里的回答,是指在紙上寫下“是”或“否”.若調(diào)查人員回收到張“是”的小紙條,試估計該校學(xué)生在考試中曾有作弊行為的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某家具廠生產(chǎn)一種辦公桌,每張辦公桌的成本為100元,出廠單價為160元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部辦公桌出廠單價降低1元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過160張.
(1)設(shè)一次訂購量為張,辦公桌的實際出廠單價為元,求關(guān)于的函數(shù)關(guān)系式;
(2)當一次性訂購量為多少時,該家具廠這次銷售辦公桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張辦公桌的利潤=實際出廠單價-成本)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司計劃在迎春節(jié)聯(lián)歡會中設(shè)一項抽獎活動:在一個不透明的口袋中裝入外形一樣號
碼分別為1,2,3,…,10的十個小球;顒诱咭淮螐闹忻鋈齻小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com