相關(guān)習(xí)題
 0  261775  261783  261789  261793  261799  261801  261805  261811  261813  261819  261825  261829  261831  261835  261841  261843  261849  261853  261855  261859  261861  261865  261867  261869  261870  261871  261873  261874  261875  261877  261879  261883  261885  261889  261891  261895  261901  261903  261909  261913  261915  261919  261925  261931  261933  261939  261943  261945  261951  261955  261961  261969  266669 

科目: 來源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點(diǎn)在軸上,且經(jīng)過點(diǎn)它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.橢圓的上頂點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),連接,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個(gè)大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為,中邊所對的角為,經(jīng)測量已知,.

1)霍爾頓發(fā)現(xiàn)無論多長,為一個(gè)定值,請你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;

2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記的面積分別為,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知平面上一個(gè)圓可以將平面分成兩個(gè)部分,兩個(gè)圓最多可以將平面分成4個(gè)部分,設(shè)平面上個(gè)圓最多可以將平面分成個(gè)部分.

,的值;

猜想的表達(dá)式并證明;

證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】北方某市一次全市高中女生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市名高中女生的身高(單位: 服從正態(tài)分布.現(xiàn)從某高中女生中隨機(jī)抽取名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部在之間,現(xiàn)將測量結(jié)果按如下方式分成組:第,,,下圖是按上述分組方法得到的頻率分布直方圖.

(1)求這名女生身高不低于的人數(shù);

(2)在這名女生身高不低于的人中任意抽取,將該人中身高排名(從高到低)在全市前名的人數(shù)記為的數(shù)學(xué)期望.

參考數(shù)據(jù): , ,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADAB,∠CAB60°,∠BCD120°,AC2.

1)若∠ABC30°,求DC;

2)記∠ABCθ,當(dāng)θ為何值時(shí),△BCD的面積有最小值?求出最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,E,F分別為A1C1BC的中點(diǎn),M,N分別為A1BA1C的中點(diǎn).求證:

1MN∥平面ABC

2EF∥平面AA1B1B.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直棱柱中, ,

.

(1)證明:直線平面;

(2)求平面與平面所成的銳二面角的余弦.

查看答案和解析>>

科目: 來源: 題型:

【題目】根據(jù)下列條件解三角形,有兩解的有(

A.已知a,b2,B45°B.已知a2,b,A45°

C.已知b3,c,C60°D.已知a2c4,A45°

查看答案和解析>>

科目: 來源: 題型:

【題目】已知分別為橢圓右頂點(diǎn)和上頂點(diǎn),且直線的斜率為,右焦點(diǎn)到直線的距離為

求橢圓的方程;

若直線 與橢圓交于兩點(diǎn),且直線的斜率之和為1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案