科目: 來源: 題型:
【題目】某人經(jīng)營一個抽獎游戲,顧客花費3元錢可購買一次游戲機會,每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機抽取2張,并根據(jù)摸出的卡片的情況進行兌獎,經(jīng)營者將顧客抽到的卡片情況分成以下類別::同花順,即卡片顏色相同且號碼相鄰;:同花,即卡片顏色相同,但號碼不相鄰;:順子,即卡片號碼相鄰,但顏色不同;:對子,即兩張卡片號碼相同;:其它,即,,,以外的所有可能情況,若經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應(yīng)顧客中一等獎,最容易發(fā)生的一種類別對應(yīng)顧客中二等獎,其他類別對應(yīng)顧客中三等獎.
(1)一、二等獎分別對應(yīng)哪一種類別?(寫出字母即可)
(2)若經(jīng)營者規(guī)定:中一、二、三等獎,分別可獲得價值9元、3元、1元的獎品,假設(shè)某天參與游戲的顧客為300人次,試估計經(jīng)營者這一天的盈利.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說明理由;
(2)若直線和曲線相交于兩點,且,求直線的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動。在1859年的時候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,)
(1)若,求函數(shù)的單調(diào)區(qū)間與極值;
(2)若在區(qū)間上至少存在一點,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;
(3)求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個焦點分別為, ,離心率為,且過點.
()求橢圓的標(biāo)準(zhǔn)方程.
()、、、是橢圓上的四個不同的點,兩條都不和軸垂直的直線和分別過點, ,且這條直線互相垂直,求證: 為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】以“你我中國夢,全民建小康”為主題“社會主義核心價值觀”為主線,為了解、兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準(zhǔn)備工作的滿意程度,對、地區(qū)的名觀眾進行統(tǒng)計,統(tǒng)計結(jié)果如下:
非常滿意 | 滿意 | 合計 | |
合計 |
在被調(diào)查的全體觀眾中隨機抽取名“非常滿意”的人是地區(qū)的概率為,且.
(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少?
(2)在(1)抽取的“滿意”的觀眾中,隨機選出人進行座談,求至少有兩名是地區(qū)觀眾的概率?
(3)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系?
附:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com